Механические колебания термины. Механические колебания

Следует уделить время небольшому очерку, посвященному колебательному движению. Но прежде необходимо ответить на один важный вопрос. Что понимают под механическими колебаниями? Под ними подразумевают движение, во время которого наблюдаемое тело неоднократно занимает одни и те же положения в пространстве.

Физики различают непериодические и периодические колебания. К первым относят те из них, при которых координаты и другие характеристики тела не поддаются описанию с помощью периодических функций времени. Со вторым видом проще. Периодические колебания - это те, которые можно описать с помощью периодических функций времени. Но что под ними подразумевают? В физике также под колебаниями часто понимают процессы, в определённой степени повторяемые во времени. И отдельно относительно рассматриваемой темы следует сказать следующее. Механические колебания условно можно классифицировать таким образом:

  1. В зависимости от условий возникновения:
    1. Вынужденные;
    2. Автоколебания;
    3. Свободные.
  2. В зависимости от изменения кинетической энергии во времени:
    1. Гармонические;
    2. Пилообразные;
    3. Затухающие.

В статье будут рассмотрены не все, а только некоторые типы колебаний. Отдельно стоит сказать о формулах, их использовании и разнообразии. Если кратко, то их много. Разнообразие, в котором представлены механические колебания, формулы определения их параметров подтолкнули ученых к созданию отдельных справочников, рассчитанных на определённые ситуации. Придумывать самостоятельно, таким образом, ничего не надо. При создании колебательной системы необходимо будет всего потратить полчаса или час на то, чтобы найти формулу под конкретную ситуацию.

Характеристика механических колебаний

Для характеристики механических колебаний используются физические величины, которые позволяют получить необходимые данные. Амплитуда колебания - наибольшее отклонение тела, которое качается от начального значения положения. А что такое период? В нем колебания - это время, которое необходимо телу, чтобы повторить все свои движения, или другими словами, необходимое для совершения одного повторения движения. Что подразумевают под частотой? Под ней понимают число, равное количеству колебаний, совершенных за одну единицу времени. Зачастую в домашних, школьных и университетских опытах за частоту принимают одну секунду. Циклическая частота часто используется вместо понятия количества колебаний, произошедших за единицу времени, и подразумевает его подсчёт, необходимый на совершение одного такого цикла.

Гармонические механические колебания

Под гармоническими колебаниями подразумеваются те из них, физическая величина которых, выбранная для характеристики, изменяется на временном интервале в виде синусоидальной кривой, которую легко отобразить в графическом режиме. При изменении координаты материальной точки, согласно гармоническому закону, импульс, скорость и ускорение изменяются тоже по нему.

Свободные колебания

Когда колебание совершается в системе благодаря первоначальной энергии, то его называют свободным. В качестве практического отображения такого типа физического процесса используют специальные модели: пружинный и математический маятники. Они позволяют работать с самыми распространёнными ситуациями. В качестве математического маятника принимают точку, что колеблется и висит на нерастяжимой и невесомой нити. Такого устройства на земле нет. Поэтому ближе всего к теоретической модели находится конструкция, составленная из шара, диаметр (размер) которого значительно меньше, чем длина нити. Необходимо провести действия физического характера. Отклоните такой шар от своего начального положения и отпустите. И так любой экспериментатор сможет увидеть механические колебания. Период, а также их частота зависят исключительно от параметров системы: длины нити математического маятника, жесткости пружины, массы груза (важно для пружинного маятника). Именно из-за этого свободные колебания ещё называют собственными колебаниями системы. Вполне логично. А частоту, с которой всё происходит, называют системной.

Превращение энергии при механических колебаниях

Потенциальная и кинетическая энергии при движениях тела переходят одна в другую. И то же самое - наоборот. Когда система отклоняется от начального положения равновесия на наибольшее возможное значение, то потенциальная энергия тоже достигает своего максимального значения, тогда как кинетика тела - минимального. Отдельно следует сказать об одном заблуждении, популярном среди людей. Когда достигается положение равновесия, то потенциальная энергия находится в точке своего минимума (обычно считают, что здесь она равняется нулю), тогда как кинетика (а это и импульс тела, и скорость его движения) достигает максимума. На практике учитывается ещё кое-что. В реальных системах присутствуют не потенциальные силы, значение которых не равняется нулю. Энергия системы растрачивается за счёт работы сил опоры, трения воздуха, внутренних сил пружины или подвеса. Постепенно уменьшается амплитуда колебания тела. Такие колебания и называются затухающими. Если сила трения слишком велика, то весь запас энергии может быть израсходован уже за период одного колебания, и движение тела не будет периодическим.

Вынужденные колебания

Под вынужденными колебаниями понимают те из них, которые происходят под влиянием внешней силы, совершающей работу, что меняется во времени. Есть и другая формулировка. Благодаря внешнему притоку энергии, она в самой системе поддерживается на достаточном уровне, чтобы происходили собственно колебания. Чтобы понять это, необходимо провести параллели с реальностью. Примером предмета, совершающего такого вида колебания, являются качели, на которых сидит один человек, а второй его раскачивает. Есть один нюанс. Если внешняя сила компенсирует потерю энергии в системе непрерывно или периодически, без прекращения самого процесса колебаний, то их называют незатухающими вынужденными.

О диапазоне можно отметить следующее. Амплитуда вынужденных колебаний полностью определена силой, которая действует извне, а также соотношением между собственными частотами принимающих участие в процессе сторон. И тут имеет место одно интересное явление. При вынужденных колебаниях периодически можно наблюдать резкое возрастание амплитуды, которое называется резонансом.

Резонанс

Он возникает в тех случаях, когда сила, что влияет на систему, становится очень близкой к её частоте колебаний. Возможен и другой вариант. В том случае, если частота влияющей силы кратна колебаниям самой системы, на которую она воздействует, тоже возникает резонанс. Как он графически изображается? Зависимость амплитуд колебания системы от частоты влияющей силы выражают с помощью резонансной кривой.

Автоколебания

Свое применение автоколебания нашли в технике. Они существуют там, где незатухающие колебания поддерживаются благодаря энергии источника, который может автоматически включать и выключать сама система. В таких случаях можно всерьез рассматривать вопрос присвоения системе статуса автоколебательной. Почему? Тот момент, когда нужно подавать энергию для колебания, отслеживает подсистема, отвечающая за обратную связь. В зависимости от параметров тела, она может оказывать влияние сильно и сразу, или понемногу и постепенно. Она может открывать или закрывать возможность для поступления энергии в общую систему. Это её главное задание. В качестве примера автоколебательной системы можно вспомнить маятниковые часы, где источник энергии - это гиря, а анкерный механизм успешно справляется с ролью подсистемы обратной связи, регулирующей подачу кинетики, от которой зависят механические колебания.

Параметрические колебания

Под этим видом колебаний определяются те из них, которые происходят в системах, что периодически изменяют свои параметры. Что можно о них сказать? Единственное, чем определяются амплитуда и сила колебательной системы, - это её параметры.

(или собственные колебания ) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети-ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра-зуют систему тел, которая называется колебательной системой .

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О ) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Силы, действующие между телами колебательной системы, называются внутренними силами . Внешними силами называют-ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод-ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

Колебания тела под действием сил упругости . Уравнение колебательного движения тела под действием силы упругости F () может быть получено с учетом второго закона Ньютона (F = mа ) и закона Гука (F упр = -kx ), где m — масса шарика, а — ускорение, приобретаемое шариком под действием силы упругости, k — коэффициент жесткости пружины, х — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох ). Приравнивая правые части этих уравнений и учитывая, что ускорение а — это вторая производная от координаты х (смещения), получим:

.

Аналогично выражение для ускорения а получим, дифференцируя (v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2) ):

a = -a m cos ω 0 t,

где a m = ω 2 0 x m — амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле-баний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.

Колебания – это движения или процессы, которые точно или приблизительно повторяются через определенные интервалы времени.

Механические колебания- колебания механических величин (смещения, скорости, ускорения, давления и т.п.).

Механические колебания (в зависимости от характера сил) бывают:

свободные;

вынужденные;

автоколебания.

Свободными называют колебания, возникающие при однократном воздействии внешней силы (первоначальном сообщении энергии) и при отсутствии внешних воздействий на колебательную систему.

Свободные (или собственные) - это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие).

Условия возникновения свободных колебаний

1. Колебательная система должна иметь положение устойчивого равновесия.

2. При выведении системы из положения равновесия должна возникать равнодействующая сила, возвращающая систему в исходное положение

3. Силы трения (сопротивления) очень малы.

Вынужденные колебания - колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания - незатухающие колебания в системе, поддерживаемые внутренними источниками энергии при отсутствии внешней переменной силы.

Частота и амплитуда автоколебаний определяется свойствами самой колебательной системы.

От свободных колебаний автоколебания отличаются независимостью амплитуды от времени и от начального воздействия, возбуждающего процесc колебаний.

Автоколебательная система состоит из: колебательной системы; источника энергии; устройства обратной связи, регулирующее поступление энергии из внутреннего источника энергии в колебательную систему.

Энергия, поступающая из источника за период, равна энергии, потерянной колебательной системой за то же время.

Механические колебания делятся на:

затухающие;

незатухающие.

Затухающие колебания - колебания, энергия которых уменьшается с течением времени.

Характеристики колебательного движения:

постоянные:

амплитуда (А)

период (Т)

частота ()

Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний. Обычно амплитуду обозначают буквой А.

Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

Период колебаний обычно обозначается буквой Т и в СИ измеряется в секундах (с).

Число колебаний в единицу времени называется частотой колебаний .

Обозначается частота буквой v (“ню”). За единицу частоты принято одно колебание в секунду. Эта единица в честь немецкого ученого Генриха Герца названа герцем (Гц).


период колебания Т и частота колебаний v связаны следующей зависимостью:

Т=1/ или =1/Т.

Циклическая (круговая) частота ω – число колебаний за 2π секунд

Гармонические колебания - механические колебания, которые происходят под действием силы, пропорциональной смещению и направленной противоположно ему. Гармонические колебания совершаются по закону синуса или косинуса.

Пусть материальная точка совершает гармонические колебания.

Уравнение гармонических колебаний имеет вид :

а – ускорение V- скорость q – заряд А – амплитуда t -время

– это движения или процессы, которые характеризуются определенной повторяемостью во времени.

Период колебаний T – интервал времени, в течение которого происходит одно полное колебание.

Частота колебаний ν – число полных колебаний в единицу времени. В системе СИ выражается в герцах (Гц).

Период и частота колебаний связаны соотношением:

Гармонические колебания – это колебания, при которых колеблющаяся величина, например смещение груза на пружине от положения равновесия, изменяется по закону синуса или косинуса:

где x 0 – амплитуда, ω – циклическая частота, φ 0 – начальная фаза колебания.

Ускорение при гармонических колебаниях всегда направлено в сторону, противоположную смещению; максимальное ускорение равно по модулю


В качестве примеров свободных колебаний можно привести пружинный и математический маятники. Пружинный (гармонический ) маятник – груз массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно. Циклическая частота колебаний груза равна:

а период: а период колебаний:

Автоколебания – это незатухающие свободные колебания, поддерживаемые за счет периодической подкачки энергии от какого-либо источника внешней силы. Примером автоколебательной системы могут служить механические часы.