Эксимерный лазер. Эксимерные и фемтосекундные лазеры

(лазерная коррекция зрения) и полупроводниковом производстве .

Лазерное излучение эксимерной молекулы происходит вследствие того, что она имеет «притягивающее» (ассоциативное) возбуждённое состояние и «отталкивающее» (не ассоциативное) основное - то есть молекул в основном состоянии не существует. Это объясняется тем, что благородные газы, такие как ксенон или криптон высокоинертны и обычно не образуют химических соединений . В возбуждённом состоянии (вызванном электрическим разрядом), они могут образовывать молекулы друг с другом (димеры) или с галогенами, такими как фтор или хлор . Поэтому появление молекул в возбуждённом связанном состоянии автоматически создаёт инверсию населённостей между двумя энергетическими уровнями. Такая молекула, находящаяся в возбуждённом состоянии, может отдать свою энергию в виде спонтанного или вынужденного излучения , в результате чего молекула переходит в основное состояние, а затем очень быстро (в течение пикосекунд) распадается на составляющие атомы.

Несмотря на то, что термин димер относится только к соединению одинаковых атомов, а в большинстве эксимерных лазеров используются смеси благородных газов с галогенами, название прижилось и используется для всех лазеров аналогичной конструкции.

Длина волны эксимерного лазера зависит от состава используемого газа, и обычно лежит в ультрафиолетовой области:

Эксимерные лазеры обычно работают в импульсном режиме с частотой следования импульсов от 1 Гц до нескольких сотен Гц, у некоторых моделей частота может достигать 2 кГц; также возможна генерация единичных импульсов. Импульсы излучения обычно имеют длительность от 10 до 30 нс и энергию от единиц до сотен мДж. Мощное ультрафиолетовое излучение таких лазеров позволяет их широко применять в хирургии (особенно глазной), в процессах фотолитографии в полупроводниковом производстве, при микрообработке материалов, в производстве ЖК панелей, а также в дерматологии . Сегодня эти устройства довольно громоздки, что является недостатком при широком медицинском применении (см. LASIK), однако их размеры постоянно уменьшаются благодаря современным разработкам.

См. также

Напишите отзыв о статье "Эксимерный лазер"

Ссылки

  • ЭКСИМЕРНЫЙ ЛАЗЕР - Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
  • Эксимерные лазеры, под ред. Ч. Роудза, пер. с англ., M., 1981

Отрывок, характеризующий Эксимерный лазер

Балашев почтительно позволил себе не согласиться с мнением французского императора.
– У каждой страны свои нравы, – сказал он.
– Но уже нигде в Европе нет ничего подобного, – сказал Наполеон.
– Прошу извинения у вашего величества, – сказал Балашев, – кроме России, есть еще Испания, где также много церквей и монастырей.
Этот ответ Балашева, намекавший на недавнее поражение французов в Испании, был высоко оценен впоследствии, по рассказам Балашева, при дворе императора Александра и очень мало был оценен теперь, за обедом Наполеона, и прошел незаметно.
По равнодушным и недоумевающим лицам господ маршалов видно было, что они недоумевали, в чем тут состояла острота, на которую намекала интонация Балашева. «Ежели и была она, то мы не поняли ее или она вовсе не остроумна», – говорили выражения лиц маршалов. Так мало был оценен этот ответ, что Наполеон даже решительно не заметил его и наивно спросил Балашева о том, на какие города идет отсюда прямая дорога к Москве. Балашев, бывший все время обеда настороже, отвечал, что comme tout chemin mene a Rome, tout chemin mene a Moscou, [как всякая дорога, по пословице, ведет в Рим, так и все дороги ведут в Москву,] что есть много дорог, и что в числе этих разных путей есть дорога на Полтаву, которую избрал Карл XII, сказал Балашев, невольно вспыхнув от удовольствия в удаче этого ответа. Не успел Балашев досказать последних слов: «Poltawa», как уже Коленкур заговорил о неудобствах дороги из Петербурга в Москву и о своих петербургских воспоминаниях.
После обеда перешли пить кофе в кабинет Наполеона, четыре дня тому назад бывший кабинетом императора Александра. Наполеон сел, потрогивая кофе в севрской чашке, и указал на стул подло себя Балашеву.
Есть в человеке известное послеобеденное расположение духа, которое сильнее всяких разумных причин заставляет человека быть довольным собой и считать всех своими друзьями. Наполеон находился в этом расположении. Ему казалось, что он окружен людьми, обожающими его. Он был убежден, что и Балашев после его обеда был его другом и обожателем. Наполеон обратился к нему с приятной и слегка насмешливой улыбкой.
– Это та же комната, как мне говорили, в которой жил император Александр. Странно, не правда ли, генерал? – сказал он, очевидно, не сомневаясь в том, что это обращение не могло не быть приятно его собеседнику, так как оно доказывало превосходство его, Наполеона, над Александром.
Балашев ничего не мог отвечать на это и молча наклонил голову.
– Да, в этой комнате, четыре дня тому назад, совещались Винцингероде и Штейн, – с той же насмешливой, уверенной улыбкой продолжал Наполеон. – Чего я не могу понять, – сказал он, – это того, что император Александр приблизил к себе всех личных моих неприятелей. Я этого не… понимаю. Он не подумал о том, что я могу сделать то же? – с вопросом обратился он к Балашеву, и, очевидно, это воспоминание втолкнуло его опять в тот след утреннего гнева, который еще был свеж в нем.
– И пусть он знает, что я это сделаю, – сказал Наполеон, вставая и отталкивая рукой свою чашку. – Я выгоню из Германии всех его родных, Виртембергских, Баденских, Веймарских… да, я выгоню их. Пусть он готовит для них убежище в России!
Балашев наклонил голову, видом своим показывая, что он желал бы откланяться и слушает только потому, что он не может не слушать того, что ему говорят. Наполеон не замечал этого выражения; он обращался к Балашеву не как к послу своего врага, а как к человеку, который теперь вполне предан ему и должен радоваться унижению своего бывшего господина.

ЭКСИМЕРНЫЙ ЛАЗЕР

ЭКСИМЕРНЫЙ ЛАЗЕР

- газовый лазер , работающий на электронных переходах эксимерных молекул (молекул, существующих только в электронно-возбуждённых состояниях). Зависимость потенц. энергии взаимодействия атомов эксимерной , находящейся в основном электронном состоянии, от межъядерного расстояния является монотонно спадающей ф-цией, что отвечает отталкиванию ядер. Для возбуждённого электронного , являющегося верх, уровнем лазерного перехода, такая зависимость имеет минимум, определяющий возможность существования самой эксимерной (рис.). Время жизни возбуждённой эксимерной молекулы ограничено

Зависимость энергии эсимерной молекулы от расстояния R между составляющими её атомами X и Y; верхняя кривая - для верхнего лазерного уровня, нижняя кривая-для нижнего лазерного уровня. Значения соответствуют центру линии усиления активной среды, её красной и фиолетовой границам. временем её радиац. распада. Поскольку ниж. состояние лазерного перехода в Э. л. опустошается в результате разлёта атомов эксимерной молекулы, характерное к-рого (10 -13 - 10 -12 с) значительно меньше времени радиац. опустошения верх, состояния лазерного перехода, содержащий эксимерные молекулы, является активной средой с усилением на переходах между возбуждёнными связанными и основным разлётным термами эксимерной молекулы.

Основу активной среды Э. л. составляют обычно двухатомные эксимерные молекулы - короткоживущие соединения атомов инертных газов друг с другом, с галогенами или с кислородом. Длина излучения Э. л. лежит в видимой или ближней УФ-области спектра. Ширина линии усиления лазерного перехода Э. л. аномально велика, что связано с разлётным характером нижнего терма перехода. Характерные значения параметров лазерных переходов для наиб, распространённых Э. л. представлены в таблице.

Параметры эксимерных лазеров

Оптимальные параметры активной среды Э. л. соответствуют оптимальным условиям образования эксимерных молекул. Наиб, благоприятные условия для образования димеров инертных газов соответствуют диапазону давлений 10-30 атм, когда происходит интенсивное образование таких молекул при тройных столкновениях с участием возбуждённых атомов:


При столь высоких давлениях наиболее эфф. способ введения энергии накачки в активную среду лазера связан с пропусканием через газ пучка быстрых электронов, к-рые теряют энергию преим. на ионизацию атомов газа. Конверсия атомных ионов в молекулярные и последующая диссоциативная молекулярных ионов сопровождающаяся образованием возбуждённых атомов инертного газа, обеспечивают возможность эфф. преобразования энергии пучка быстрых электронов в энергию эксимерных молекул Лазеры на димерах инертных газов характеризуются ~1%. Осн. недостатком лазеров данного типа является чрезвычайно высокое значение уд. порогового энерговклада, что связано с малой длиной волны лазерного перехода и значит, шириной линии усиления. Это накладывает высокие требования на характеристики электронного пучка, используемого в качестве источника накачки лазера, и ограничивает значения выходной энергии лазерного излучения на уровне долей Дж (в импульсе) при частоте повторения импульсов не выше неск. Гц. Дальнейшее увеличение выходных характеристик лазеров на димерах инертных газов зависит от развития техники электронных ускорителей с длительностью импульса электронного пучка порядка десятков не и энергией пучка ~кДж.

Существенно более высокими выходными характеристиками отличаются Э. л. на моногалогенидах инертных газов RX*, где X - галогена. Молекулы этого типа эффективно образуются при парных соударениях, напр.или

Указанные протекают с достаточной интенсивностью уже при давлениях порядка атмосферного, поэтому проблема введения энергии в активную среду таких лазеров оказывается технически значительно менее сложной, чем в случае лазеров на димерах инертных газов. Активная среда Э. л. на моногалогенидах инертных газов состоит из одного или неск. инертных газов при давлении порядка атмосферного и нек-рого кол-ва (~10 -2 атм) га-логеносодержаших молекул. Для возбуждения лазера применяется либо пучок быстрых электронов, либо импульсный электрич. разряд. При использовании пучка быстрых электронов выходная лазерного излучения достигает значений ~ 10 3 Дж при кпд на уровне неск. процентов и частоте повторения импульсов значительно ниже 1 Гц. В случае использования электрич. разряда выходная энергия лазерного излучения в импульсе не превышает долей Дж, что связано с трудностью формирования однородного по объёму разряда в значит, объёме при атм. давлении за время ~ 10 нс. Однако при применении электрич. разряда достигается высокая частота повторения импульсов (до неск. кГц), что открывает возможности широкого практич. использования лазеров данного типа. Наиб. широкое распространение среди Э. л. получил на XeCl, что связано с относительной простотой реализации работы в режиме высокой частоты повторения импульсов. Cp. выходная этого лазера достигает уровня 1 кВт.

Наряду с высокими энергетич. характеристиками важной привлекательной особенностью Э. л. является чрезвычайно высокое значение ширины линии усиления активного перехода (табл.). Это открывает возможность создания мощных лазеров УФ- и видимого диапазонов с плавной перестройкой длины волны в достаточно широкой области спектра. Указанная задача решается с помощью инжекционной схемы возбуждения лазера, включающей в себя маломощный генератор лазерного излучения с длиной волны, перестраиваемой в пределах ширины линии усиления активной среды Э. л., и широкополосный усилитель. Эта схема позволяет получить лазерное с шириной линии ~ 10 -3 HM, перестраиваемое по длине волны в диапазоне шириной ~ 10 HM и более.

Э. л. широко используются благодаря своим высоким энергетич. характеристикам, малой длине волны и возможности её плавной перестройки в довольно широком диапазоне. Мощные моноимпульсные Э. л., возбуждаемые электронными пучками, применяются в установках по исследованию лазерного нагрева мишеней с целью осуществления термоядерных реакций (напр., KrF-лазер с HM, выходной энергией в импульсе до 100 кДж, длительностью импульса ~ 1 не). Лазеры с высокой частотой повторения импульсов, возбуждаемые импульсным газовым разрядом, используются в технол. целях при обработке изделий микроэлектроники, в медицине, в экспериментах по лазерному разделению изотопов, при зондировании атмосферы в целях контроля её загрязнения, в фотохимии и в эксперим. физике в качестве интенсивного источника монохроматич. излучения УФ- или видимого диапазона.

Лит.: Эксимерные лазеры, под ред. Ч. Роудза, пер. с англ., M., 1981; ЕлецкийА. В.. Смирнов Б. M., Физические процессы в газовых лазерах, M.. 1985. А. В. Елецкий.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЭКСИМЕРНЫЙ ЛАЗЕР" в других словарях:

    Эксимерный лазер разновидность ультрафиолетового газового лазера, широко применяемая в глазной хирургии (лазерная коррекция зрения) и полупроводниковом производстве. Термин эксимер (англ. excited dimer) обозначает возбуждённый димер и… … Википедия

    эксимерный лазер - Газовый лазер в котором лазерная активная среда в виде неустойчивого соединения ионов создается в газовом разряде при электрической накачке. [ГОСТ 15093 90] Тематики лазерное оборудование EN excimer laser … Справочник технического переводчика

    эксимерный лазер - eksimerinis lazeris statusas T sritis radioelektronika atitikmenys: angl. excimer laser vok. Excimer Laser, m rus. эксимерный лазер, m pranc. laser à excimères, m … Radioelektronikos terminų žodynas

    У этого термина существуют и другие значения, см. Лазер (значения). Лазер (лаборатория NASA) … Википедия

    Лазер, применяющийся для удаления очень тонких слоев ткани с поверхности роговицы глаза. Данная операция может производиться с целью изменения кривизны поверхности роговицы, например, в процессе лечения миопии (фоторефракционная кератэктомия… … Медицинские термины

    - (аббревиатура от Light Amplification by Stimulated Emission of Radiation) прибор, позволяющий получить очень тонкий пучок света с высокой концентрацией энергии в нем. В хирургической практике лазер применяется для проведения операций,… … Медицинские термины

    ЛАЗЕР - (laser) (аббревиатура от Light Amplification by Stimulated Emission of Radiation) прибор, позволяющий получить очень тонкий пучок света с высокой концентрацией энергии в нем. В хирургической практике лазер применяется для проведения операций,… … Толковый словарь по медицине

    ЛАЗЕР ЭКСИМЕРНЫЙ - (excimer laser) лазер, применяющийся для удаления очень тонких слоев ткани с поверхности роговицы глаза. Данная операция может производиться с целью изменения кривизны поверхности роговицы, например, в процессе лечения миопии (фоторефракционная… … Толковый словарь по медицине

    Линия фотолитографии для производства кремниевых пластин Фотолитография метод получения рисунка на тонкой плёнке материала, широко используется в микроэлектронике и в полиграфии. Один из … Википедия

Книги

  • Генераторы высоковольтных импульсов на основе составных твердотельных коммутаторов , Хомич Владислав Юрьевич, Мошкунов Сергей Игоревич. Монография посвящена вопросам разработки и создания высоковольтных генераторов импульсов на полупроводниковой основе. Описаны основные принципы построения составных высоковольтных…

Эксимерные лазеры представляют собой интересный и важный класс молекулярных лазеров на переходах между различными электронными состояниями. Рассмотрим двухатомную

молекулу кривые потенциальной энергии для основного и возбужденного состояний которой приведены на рис. 6.25. Поскольку основное состояние соответствует взаимному отталкиванию атомов, в этом состоянии молекула не существует (т. е. в основном состоянии частицы существуют лишь в мономерной форме А). Однако, поскольку кривая потенциальной энергии возбужденного состояния имеет минимум, молекула может существовать в возбужденном состоянии (т. е. в возбужденном состоянии частицы существуют в димерной форме Такая молекула А называется эксимером (аббревиатура англ. слов - возбужденный димер). Предположим теперь, что в некотором объеме каким-либо образом создано большое число эксимеров. Тогда генерация может быть получена на переходе между верхним (связанным) и нижним (свободным) состояниями (связанно-свободный переход). Соответствующий лазер называется эксимерным. Эти лазеры характеризуются двумя необычными, но важными свойствами благодаря тому, что основное состояние соответствует взаимному отталкиванию атомов. 1) Как только в результате генерации молекула перейдет в основное состояние, она немедленно диссоциирует. Это означает, что нижний лазерный уровень будет всегда пустым. 2) Не существует четко выраженных вращательно-колебательных переходов, и переход является относительно широкополосным Однако следует заметить, что в некоторых эксимерных лазерах кривая потенциальной энергии основного состояния не соответствует чистому взаимному отталкиванию, а обладает неглубоким минимумом. В этом случае переход происходит между верхним связанным состоянием и нижним (слабо) связанным состоянием (связанно-связанный переход). Однако, поскольку основное состояние является лишь слабосвязанным, молекула в этом состоянии претерпевает быструю диссоциацию либо сама (предис-социация), либо вследствие первого же столкновения с другой молекулой газовой смеси.

Рис. 6.25. Энергетические уровни эксимерного лазера.

Рассмотрим теперь наиболее интересный класс эксимерных лазеров, в которых атом инертного газа (например, ) в возбужденном состоянии соединяется с атомом галогена что приводит к образованию эксимера галогенидов инертных газов. В качестве конкретных примеров укажем , которые генерируют все в УФ-диапазоне. То, почему галогениды инертных газов легко образуются в возбужденном состоянии, становится ясным, если учесть, что в возбужденном состоянии атомы инертных газов становятся химически сходными с атомами щелочных металлов, которые, как известно, легко вступают в реакцию с галогенами. Эта аналогия указывает также на то, что в возбужденном состоянии связь имеет ионный характер; в процессе образования связи возбужденный электрон переходит от атома инертного газа к атому галогена. Поэтому подобное связанное состояние также называют состоянием с переносом заряда, Рассмотрим теперь подробнее -лазер, так как он представляет собой один из наиболее важных лазеров данной категории. На рис, 6.26 приведена диаграмма потенциальной энергии молекулы Верхний лазерный уровень является состоянием с переносом заряда и ионной связью, которое при отвечает состоянию положительного иона и состоянию 5 отрицательного иона Поэтому энергия при равна потенциалу ионизации атома криптона минус сродство атома фтора к электрону, При больших межъядерных расстояниях кривая энергии подчиняется закону Кулона. Таким образом, потенциал взаимодействия между двумя ионами простирается на гораздо большее расстояние чем в случае, когда преобладает ковалентное взаимодействие (ср., например, с рис, 6.24), Нижнее состояние имеет ковалентную связь и при отвечает состоянию атома криптона и состоянию атома фтора, Таким образом, в основном состоянии атомные состояния инертного газа и галогена меняются местами. В результате взаимодействия соответствующих орбиталей верхнее и нижнее состояния при малых межъядерных расстояниях расщепляются на состояния и Генерация происходит на переходе поскольку он имеет наибольшее сечение, Заметим, что при переходе излучающий электрон передается от иона иону

Обращаясь к механизмам возбуждения, заметим, что электрическое возбуждение приводит в основном к образованию возбужденных атомов и ионов Обе частицы сразу же приводят к образованию возбужденных молекул . В самом деле, возбужденный атом может реагировать с молекулой в соответствии со следующей реакцией:

Используя рассмотренную выше аналогию между возбужденными атомами инертного газа и атомами щелочных металлов, можно сразу же предположить, что скорость реакции (6.12) будет сравнима со скоростью реакции между (атом щелочного металла, соответствующий и молекулой

Рис. 6.26. Кривые потенциальной энергии, отражающие молекулярную структуру

Ион напротив, реагирует с ионами которые образуются в реакции присоединения электрона с диссоциацией:

Заметим, что для одновременного выполнения законов сохранения энергии и импульса рекомбинация двух ионов должна протекать посредством трехчастичного столкновения:

где М - атом буферного газа (в данном случае это, как правило, гелий). Из-за большого расстояния взаимодействия двух ионов данная реакция также идет с очень большой скоростью, если давление буферного газа достаточно велико (газовая смесь обычно состоит из при давлении около 120 мбар, при давлении 6 мбар и Не при давлении 2400 мбар).

Эксимерные лазеры на галогенидах инертных газов обычно накачиваются электрическим разрядом в соответствии с общей схемой, представленной на рис. 6,21.

Рис. 6.27, Энергия в импульсе, излучаемая ТЕА-лазером с УФ-предыонизацией электрического разряда. В каждом из указанных лазеров использовалась та же лазерная трубка, что и на рис. 6.21, но заполненная соответствующим газом.

Предыонизация обычно достигается, как и на рис. 6,21, излучающими в УФ-диапазоне искровыми разрядами. Поскольку глубина проникновения УФ-излучения в газовую смесь ограничена, для больших установок (поперечные размеры разряда больше 2-3 см) иногда применяют предыонизацию рентгеновским излучением. Для лабораторных устройств и самых крупных установок иногда используют также накачку внешним электронным пучком, Во всех случаях усиление оказывается очень большим, так что в лазерном резонаторе обычно на одном из концов в качестве зеркала устанавливают непросветленный эталон, а на другом конце используют зеркало со 100 %-ным отражателем (например, заднее зеркало на рис. 6.21), Поскольку время жизни верхнего уровня сравнительно невелико, а также чтобы избежать образования дуги, необходимо обеспечить быструю накачку (длительность импульса накачки 10-20 не). В случае, представленном на рис, 6.21, это достигается, как и в азотном лазере, тем, что уменьшают по возможности индуктивность контура и используют

безындукционные конденсаторы, присоединенные к разрядным электродам короткими проводниками. В действительности один и тот же лазер типа изображенного на рис. 6,21 можно использовать как TEA -лазер, азотный лазер или эксимерный лазер просто заменой газовой смеси, На рис. 6.27 показаны полученные таким способом выходные энергии одиночного импульса для различных лазеров. Имеются эксимерные лазеры с частотой повторения примерно до 500 Гц и средней выходной мощностью вплоть до 100 Вт, В настоящее время создаются также более крупные установки со средней мощностью более 1 кВт, Благодаря большому квантовому выходу (см. рис, 6,26) и высокой эффективности процессов накачки КПД этих лазеров обычно довольно высок (2-4 %).

Эксимерные лазеры используются для очень точного травления различных материалов в приложениях, связанных с электронными печатными схемами, а также для выжигания тканей в биологии и медицине (например, радиальная кератомия радужной оболочки глаза). Эксимерные лазеры также широко используются в научных исследованиях и, по-видимому, найдут многочисленные применения там, где требуется источник мощного УФ-излучения с высоким КПД (например, в фотохимии).


В современной рефракционной хирургии используются 2 вида лазерных систем для лазерной коррекции зрения: это эксимерные и фемтосекундные установки, которые имеют ряд отличительных особенностей и применяются для решения различных задач.

Эксимерные лазеры

Эксимерный лазер относится к газовым лазерным устройствам. Рабочей средой в этом лазере является смесь, которая состоит из инертных и галогеновых газов. В результате особых реакция происходит образование эксимерных молекул.

Слово эксимер является аббревиатурой, которую можно дословно перевести, как возбужденный димер. Этим термином обозначают нестабильную молекулу, которая формируется при стимуляции электронами. При дальнейшем переходе молекул в прежнее состояние происходит выброс фотонов. При этом длина волны зависит от газа, который применяется в устройстве. В медицинской практике обычно используют эксимерные лазеры, которые излучают фотоны в области ультрафиолетового спектра (157-351 нм).

В медицинских целях используют импульсный световой поток высокой мощности, который приводит к абляции тканей в зоне воздействия. Так эксимерный лазер в некоторых случаях может заменить скальпель, так как вызывает фотохимическую деструкцию поверхностных тканей. При этом лазер не приводит к повышению температуры и последующему тепловому разрушению клеток, которое затрагивает глубжележащие ткани.

История эксимерных лазеров

В 1971 году впервые эксимерный лазер был представлен в Физическом институте имени Лебедева П.Н. в Москве несколькими учеными (Басов, Попов, Даниличев). В этом устройстве использовался биксенон, который возбуждался электронами. Лазер имел длину волны 172 нм. В дальнейшем в устройстве стали применять смеси различных газов (галогены и инертные газы). Именно в таком виде лазер был запатентован американцами Хартом и Сирлесом из лаборатории ВМС. Сначала этот лазер использовали для гравировки компьютерных чипов.

Только в 1981 году ученый Шривансон выявил свойство лазера производить сверхточные разрезы тканей, не вызывая при этом повреждения окружающих клеток высокими температурами. При облучении тканей лазером с длиной волны в ультрафиолетовом диапазоне происходит разрыв межмолекулярных связей, в результате чего ткани из твердых становятся газообразными, то есть происходит их испарение (фотоабляция).

В 1981 году лазеры начали внедрять в офтальмологическую практику. При этом лазер использовали для влияния на роговицу.

В 1985 году была проведена первая лазерная коррекция по методике ФРК с применением эксимерного лазера.

Все эксимерные лазеры, которые используют в современной клинической практике, работают в импульсном режиме (частота 100 или 200 Гц, длина импульса 10 или 30 нс) с одинаковым диапазоном длин волн. Эти устройства различаются формой лазерного пучка (летающее пятно или сканирующая щель) и составом инертного газа. В поперечном разрезе пучок лазера выглядит как пятно или щель, он перемещается по определенной траектории, удаляя заданные слои роговицы. В результате роговица приобретает новую форму, которая была запрограммирована с учетом индивидуальных параметров. В зоне фотоабляции нет существенного (более 6-5 градусов) повышения температуры, так как продолжительность лазерного облучения незначительная. При каждом импульсе лазерный пучок испаряет один слой роговицы, толщина которого составляет 0,25 мкм (примерно в пятьсот раз меньше, чем волос человека). Такая точность позволяет получить отменный результат при использовании эксимерного лазера для коррекции зрения.

Фемтосекундные лазеры

Офтальмология, как и многие другие области медицины, активно развивается в последние годы. Благодаря этому, совершенствуются методики проведения операций на глазах. Около половины успеха операции зависит от современного оборудования, которое используется во время диагностики и непосредственно при проведении вмешательства. Во время выполнения лазерной коррекции зрения используется луч, который контактирует с роговицей и с высокой точностью изменяет ее форму. Это позволяет сделать операцию бескровной и максимально безопасной. Именно в офтальмологии раньше, чем в других областях медицинской практики, стали использовать лазер для проведения оперативных вмешательств.

При лечении заболеваний глаз используют лазерные устройства особого типа, которые различаются источником изучения, длиной волны (криптоновые лазеры, имеющие красно-желтый диапазон свечения, аргоновые лазеры, гелий-неоновые установки, эксимерные лазеры и др.). В последнее время широкое распространение получили фемтосекундные лазеры, которые отличаются коротким импульсом свечения, составляющим всего несколько (иногда несколько сотен) фемтосекунд.

Преимущества фемтосекундных лазеров

Фемтосекундные лазеры имеют ряд преимуществ, которые делают их незаменимыми для использования в офтальмологии. Приборы эти отличаются высокой точностью, поэтому можно получить очень тонкий слой роговицы с заданными заранее параметрами лоскута.

Во время операции контактная линза установки соприкасается на мгновение с роговицей, в результате чего формируется лоскут из поверхностных слоев. Уникальные возможности фемтосекундного лазера помогают сформировать лоскут любой формы и толщины в зависимости от потребностей хирурга.

Областью применения фемтосекундного лазера в офтальмологии является коррекция аметропии (астигматизма, близорукости, гиперметропии), трансплантация роговицы и создание интрастромальных колец. Именно операции, в которых используется фемтосекундный лазер, позволяют получить стабильный и высокий результат. После проведения оперативного вмешательства лоскут помещают на прежнее место, поэтому раневая поверхность заживает очень быстро без наложения швов. Также при использовании фемтосекундного лазера снижается дискомфорт во время операции и болевые ощущения после нее.

7 фактов в пользу фемтосекундного лазера

  • При хирургической операции не требуется использования скальпеля, а сама манипуляция проходит очень быстро. Для того, чтобы создать лоскут при помощи лазера требуется всего 20 секунд. Масштаб лазера идеально подходит для офтальмологических вмешательств. Во время и после процедуры пациент не испытывает болевых ощущений, потому что ткани практически не повреждаются (слои сетчатки расслаиваются под влиянием воздушных пузырьков).
    Сразу же после отделения лоскута роговицы можно приступать к непосредственной коррекции зрения путем выпаривания стромального вещества. При этом вся операция занимает не более шести минут для одного глаза. Если же использовать другой лазер, то может понадобиться время для того, чтобы исчезли все воздушные пузырьки (около часа).
  • Операцию проводят под контролем Eye-tracking, который представляет собой систему слежения за смещением глазного яблока. Благодаря этому, все импульсы лазерного луча попадают именно в ту точку, в которую было запрограммировано. В результате зрение после операции восстанавливается до высоких значений.
  • Острота зрения в темноте при проведении операции на фемтосекундном лазере также достигает высоких значений. Особенно хорошо восстанавливается темновое зрение после коррекции по методике ФемтоЛасик, при которой учитываются индивидуальные параметры роговицы и зрачка пациента.
  • Быстрое восстановление. После лазерной коррекции зрения можно сразу же ехать домой, но специалисты рекомендуют задержаться в клинике хотя бы на день. Это позволит снизить риск заражения и травм роговицы по дороге. Зрительная функция восстанавливается максимально быстро. Ужа на следующее утро острота зрения достигает максимальных значений.
  • Нетрудоспособность только сутки. Полное заживление роговицы продолжается около недели, но в большинстве случаев пациент может вернуться к работе уже на следующий день после операции с применением фемтосекундного лазера. В течение восстановительного периода следует закапывать специальные капли, а также исключить физическую активность и повышенные зрительные нагрузки.
  • Техническое совершенство при выполнении ФемтоЛасик становится возможным, благодаря богатому опыту проведения подобных операций. Фемтосекундный лазер используют еще с 1980 года, и за это время были исправлены все ошибки и неточности методики.
  • Предсказуемость результатов при этом типе лазерной коррекции зрения достигает 99%. Крайне редко в силу индивидуальных особенностей пациента после операции отмечается недокоррекция, которая требует повторного вмешательства или очковой коррекции.

Эксимер-лазерная установка WaveLight EX500

WaveLight EX500 - эксимер-лазерная установка последнего поколения, использование уникальных преимуществ которой позволяет максимально комфортно и безопасно для пациента добиваться наилучших показателей остроты зрения.

Рабочая частота импульса - 500 Гц, что позволяет считать WaveLight EX500 одной из самых быстрых эксимер-лазерных систем в мире. Благодаря высокой скорости работы лазера роговица не подвергается излишнему термическому воздействию, что предотвращает ее обезвоживание во время процедуры - соответственно, восстановительный период после лазерной коррекции сокращается и протекает максимально комфортно.

В новой эксимер-лазерной установке реализована полная интеграция с диагностическим комплексом - единый сервер для диагностического оборудования и хирургического лазера позволяет полностью автоматизировать перенос данных, что минимизирует человеческий фактор. Встроенный пахиметр обеспечивает дополнительный контроль глубины лазерного воздействия, позволяя измерять толщину роговицы в режиме on-line, на всех этапах хирургического вмешательства.

Точно определить зону воздействия лазера позволяет инфракрасная система трэкинга, которая следит за центром зрачка и синхронизирована с самим лазерным источником. Время реакции системы слежения за глазом менее 3 миллисекунд. Частота системы слежения за глазом 1050Гц. Контроль положения глаза по центру зрачка, краю роговицы, радужной оболочке позволяет отслеживать малейшие движения глаза таким образом, чтобы не оказывалось влияние на точность проведения коррекции.

Благодаря использованию технологий оптимизированного и контролируемого волнового фронта предотвращается риск возникновения сферических аберраций, у пациентов практически отсутствуют проблемы, связанные с нарушениями сумеречного и ночного видения.

Границы применения эксимер-лазерной установки WaveLight EX500:

  • близорукость от -0.25 до -14,0 D;
  • миопический астигматизм от -0.25 до -6.0 D;
  • дальнозоркость от +0.25 до +6.0 D;
  • гиперметропический астигматизм от +0.25 до +6.0 D.

Лазер VISX Star S4 IR

Лазер VISXStarS4 IR существенно отличается от других моделей — он позволяет проводить эксимер-лазерную коррекцию пациентам с осложненными формами близорукости, дальнозоркости и аберрациями (искажениями) более высоких порядков.

Новый комплексный подход, реализованный в установке VISX Star S4 IR, позволяет гарантировать максимально сглаженную поверхность роговицы, формируемую в процессе лазерной коррекции, отслеживать возможные незначительные движения глаза пациента в ходе операции, максимально компенсировать сложнейшие искажения всех оптических структур глаза. Такие характеристики эксимерного лазера существенно снижают вероятность послеоперационных осложнений, значительно сокращают реабилитационный период, и гарантируют высочайшие результаты.

Границы применения:

  • Близорукость (миопия) до —16 D;
  • Дальнозоркость (гиперметропия) до +6 D;
  • Сложный астигматизм до 6 D.

Фемтосекундые лазеры

Фемтосекундый лазер FS200 WaveLight

Фемтосекундный лазер FS200 WaveLight обладает самой высокой скоростью формирования роговичного лоскута — всего за 6 секунд, в то время как другие модели лазеров формируют стандартный лоскут за 20 секунд. В процессе эксимер-лазерной коррекции фемтосекундный лазер FS200 WaveLight создает роговичный лоскут путем приложения очень быстрых импульсов лазерного излучения.

Фемтосекундный лазер использует луч инфракрасного света для точного отделения ткани на заданной глубине с помощью процесса, называемого «фоторазрыв». Импульс лазерной энергии фокусируется в точном месте внутри роговицы , тысячи лазерных импульсов располагаются рядом для создания плоскости доступа. За счет нанесения по определенному алгоритму и на определенной глубине в роговице множества лазерных импульсов представляется возможным выкроить роговичный лоскут любой формы и на любой глубине. То есть уникальные характеристики фемтосекундного лазера дают возможность офтальмохирургу формировать роговичный лоскут, полностью контролируя его диаметр, толщину, центровку и морфологию при минимальном нарушении архитектуры.

Чаще всего фемтосекундный лазер применяется в ходе эксимер-лазерной коррекции по методике ФемтоЛасик , которая отличается от других методик тем, что роговичный лоскут формируется с помощью лазерного луча, а не механического микрокератома. Отсутствие механического воздействия увеличивает безопасность проведения лазерной коррекции и в несколько раз снижает риск появления приобретенного послеоперационного роговичного астигматизма, а также позволяет проводить лазерную коррекцию пациентам с тонкой роговицей.

Фемтосекундный лазер FS200 WaveLight объединен в единую систему с , и поэтому время проведения процедуры эксимер-лазерной коррекции с использованием этих двух лазерных установок — минимальное. Благодаря своим уникальным свойствам по созданию индивидуального роговичного лоскута, фемтосекундный лазер также успешно применяется в ходе проведения кератопластики при формировании роговичного туннеля для последующей имплантации внутристромального кольца.

Фемтосекундый лазер IntraLase FS60

Фемтосекундный лазер IntraLase FS60 обладает высокой частотой и малой продолжительностью импульсов. Продолжительность одного импульса измеряется фемтосекундами (одна триллионная часть секунды, 10-15с), что позволяет разделять слои роговицы на молекулярном уровне без выделения тепла и механического воздействия на окружающие ткани глаза. Процесс формирования лоскута при помощи фемтосекундного лазера FS60 для проведения лазерной коррекции зрения происходит за несколько секунд, абсолютно бесконтактно (без разреза роговицы).

Фемтосекундный лазер IntraLase FS60 входит в завершенную линейку оборудования системы iLasik. Он работает совместно с эксимерным лазером VISX Star S4 IR и аберрометром WaveScan. Этот комплекс дает возможность проводить лазерную коррекцию зрения, учитывая малейшие особенности зрительной системы пациента.

Микрокератомы

Результат лазерной коррекции зависит от многих параметров. Это и опыт специалиста, и применяемая методика лечения, и лазер используемый в ходе коррекции. Но не менее значим в процессе лечения такой прибор, как микрокератом. Микрокератом необходим для проведения эксимер-лазерной коррекции по методике ЛАСИК. Особенность микрокератомов, работающих в клиниках «Эксимер», — высочайшая безопасность. Они могут работать в автономном режиме, вне зависимости от электроснабжения. В процессе лечения по методике ЛАСИК воздействию подвергаются не внешние слои роговицы, а внутренние. Для того, чтобы отделить верхние слои роговицы, и нужен микрокератом. В клинике «Эксимер» используют микрокератомы всемирно известной фирмы «Moria». Она одной из первых стала выпускать не ручные, а автоматические модели, которые позволили минимизировать риски при проведении эксимер-лазерной коррекции и существенно повысить ее качество.

Moria Evolution 3

Данный тип микрокератома позволяет осуществить подготовительную стадию перед эксимер-лазерной коррекцией зрения (а именно — формирование лоскута) наименее болезненно для пациента и снизить состояние дискомфорта до минимума. Прибор оснащен многоразовыми головками, фиксирующими вакуумными кольцами, а также непосредственно автоматическим кератомом ротационного типа. Конструкция колец и головок микрокератома позволяет гибко настраивать оборудование под индивидуальные особенности глаза пациента, что приводит к более точным и гарантированным результатам.