Тесты по теории вероятностей методичка. Простые задачи по теории вероятности

Основные понятия по теме:

1. Испытание, элементарный исход, исход испытания, событие.

2. Достоверное событие, невозможное событие, случайное событие.

3. Совместные события, несовместные события, равносильные события, равновозможные события, единственно возможные события.

4. Полная группа событий, противоположные события.

5. Элементарное событие, составное событие.

6. Сумма нескольких событий, произведение нескольких событий. Их геометрическая интерпретация

1. В задаче « Производится два выстрела по мишени. Найти вероятность того, что мишень будет поражена один раз» испытанием является:

1)* производится два выстрела по мишени;

2) мишень будет поражена один раз;

3) мишень будет поражена два раза.

2. Бросают монету. Событие: А – «выпадет герб». Cобытие – «выпадет цифра» является:

1) случайным;

2) достоверным;

3) невозможным;

4)* противоположным.

3. Подбрасывается игральный кубик. Обозначим события: А - «выпадение 6 очков», В - «выпадение 4 очков», D - «выпадение 2 очков», С - «выпадение четного числа очков». Тогда событие С равно

1)
;

2)
;

3)*
;

4)
.

4. Студент должен сдать два экзамена. Событие А - « студент сдал первый экзамен», событие В - «студент сдал второй экзамен», событие С - «студент сдал оба экзамена». Тогда событие С равно

1)*
;

2)
;

3)
;

4)
.

5. Из букв слова «ЗАДАЧА» наугад выбирается одна буква. Событие - «выбрана буква К» является

1) случайным;

2) достоверным;

3)* невозможным;

4) противоположным.

6. Из букв слова «МИР» наугад выбирается одна буква. Событие - «выбрана буква М» является

1)* случайным;

2) достоверным;

3) невозможным.

7. Событие - «из урны, содержащей только белые шары, извлекают белый шар» является

1) случайным;

2)* достоверным;

3) невозможным.

8. Два студента сдают экзамен. События: А - «экзамен сдаст первый студент», В - «экзамен сдаст второй студент» являются

1) несовместными;

2) достоверными;

3) невозможными;

4)*совместными.

9. События называют несовместными, если

4)* наступление одного исключает возможность появления другого.

10. События называют единственно возможными, если

1) наступление одного не исключает возможность появления другого;

2) при осуществлении комплекса условий каждое из них имеет равную возможность наступить;

3)* при испытании обязательно наступит хотя бы одно из них;

Тема 2. Классическое определение вероятности

Основные понятия по теме:

1. Вероятность события, классическое определение вероятности случайного события.

2. Исход, благоприятствующий событию.

3. Геометрическое определение вероятности.

4. Относительная частота события.

5. Статистическое определение вероятности.

6. Свойства вероятности.

7. Способы подсчета числа элементарных исходов: перестановки, сочетания, размещения.

Применение всех этих понятий на практических примерах.

Примерные тестовые задания, предлагаемые в этой теме:

1. События называют равновозможными, если

1) они несовместны;

2)* при осуществлении комплекса условий каждое из них имеет равную возможность наступить;

3) при испытании обязательно наступит хотя бы одно из них;

4) наступление одного исключает возможность появления другого.

2. Испытание - «бросают две монеты». Событие - «хотя бы на одной из монет выпадет герб». Число элементарных исходов, благоприятствующих данному событию равно:

4) четыре.

3. Испытание - «бросают две монеты». Событие - «на одной из монет выпадет герб». Число всех элементарных, равновозможных, единственно возможных, несовместных исходов равно:

4)* четыре.

4. В урне 12 шаров, ничем, кроме цвета, не отличающихся. Среди этих шаров 5 черных и 7 белых. Событие - «случайным образом извлекают белый шар». Для этого события число благоприятствующих исходов равно:

5. В урне 12 шаров, ничем, кроме цвета, не отличающихся. Среди этих шаров 5 черных и 7 белых. Событие - «случайным образом извлекают белый шар». Для этого события число всех исходов равно:

6. Вероятность события принимает любое значение из промежутка:

3)
;

4)
;

5)*
.

7. Абонент забыл две последних цифры телефонного номера и, зная, лишь, что они различны, набрал их наудачу. Сколькими способами он это может сделать?

1);

2)*;

1.Указать верное определение.Суммой двух событий называется:

а) Новое событие, состоящее в том, что происходят оба события одновменно;

б) Новое событие, состоящее в том, что происходит или первое, или второе, или оба вместе;+

  1. Указать верное определение.Произведением двух событий называется:

а) Новое событие, состоящее в том, что происходят оба события одновременно;+

б) Новое событие, состоящее в том, что происходит или первое, или второе, или оба вместе;

в) Новое событие, состоящее в том, что происходит одно но не происходит другое.

  1. Указать верное определение.Вероятностью события называется:

а) Произведение числа исходов, благоприятствующих появлению события на общее число исходов;

б) Сумма числа исходов, благоприятствующих появлению события и общего числа исходов;

в) Отношение числа исходов, благоприятствующих появлению события к общему числу исходов;+

  1. Указать верное утверждение. Вероятность невозможного события:

б) равна нулю;+

в) равна единице;

  1. Указать верное утверждение. Вероятность достоверного события:

а) больше нуля и меньше единицы;

б) равна нулю;

в) равна единице;+

  1. Указать верное свойство. Вероятность случайного события:

а) больше нуля и меньше единицы;+

б) равна нулю;

в) равна единице;

  1. Указать правильное утверждение:

а) Вероятность суммы событий равна сумме вероятностей этих событий;

б) Вероятность суммы независимых событий равна сумме вероятностей этих событий;

в) Вероятность суммы несовместных событий равна сумме вероятностей этих событий;+

  1. Указать правильное утверждение:

а) Вероятность произведения событий равна произведению вероятностей этих событий;

б) Вероятность произведения независимых событий равна произведению вероятностей этих событий;+

в) Вероятность произведения несовместных событий равна произведению вероятностей этих событий;

  1. Указать верное определение.Событие это:

а) Элементарный исход;

б) Пространство элементарных исходов;

в) Подмножество множества элементарных исходов.+

  1. Указать правильный ответ. Какие события называются гипотезами?.

а) любые попарно несовместные события;

б) попарно несовместные события, объединение которых образует достоверное событие;+

в) пространство элементарных событий.

  1. Указать правильный ответ Формулы Байеса определяют:

а) априорную вероятность гипотезы,

б) апостериорную вероятность гипотезы,

в) вероятность гипотезы.+

  1. Указать верное свойство. Функция распределения случайной величины Х является:

а) невозрастающей; б) неубывающей; +в) произвольного вида.

  1. Указать верное

а) независимых+; б) зависимых; в) всех.

  1. Указать верное свойство. Равенство справедливо для случайных величин:

а) независимых;+ б) зависимых; в) всех.

  1. Указать правильное заключение.Из того, что корреляционный момент для двух случайных величин Х и Y равен нулю следует:

а) отсутствует функциональная зависимость между Х и Y;

б) величины Х и Y независимы;+

в) отсутствует линейная корреляция между Х и Y;

  1. Указать правильный ответ. Дискретную случайную величину задают:

а) указывая её вероятности;

б) указывая её закон распределения;+

в) поставив каждому элементарному исходу в соответствие

действительное число.

  1. Указать верное определение. Математическое ожидание случайной величины — это:

а) начальный момент первого порядка;+

б) центральный момент первого порядка;

в) произвольный момент первого порядка.

  1. Указать верное определение. Дисперсия случайной величины- это:

а) начальный момент второго порядка;

б) центральный момент второго порядка;+

в) произвольный момент второго порядка.

  1. Указать верную формулу. Формула для вычисления среднего квадратического отклонения случайной величины:

а) +; б) ; в) .

  1. Указать верное определение. Мода распределения –это:

а) значение случайной величины при котором вероятность равняется 0,5;

б) значение случайной величины при котором либо вероятность, либо функция плотности достигают максимального значения;+

в) значение случайной величины при котором вероятность равняется 0.

  1. Указать верную формулу. Дисперсия случайной величины вычисляется по формуле:
  1. Указатьверную формулу. Плотность нормального распределения случайной величины определяется по формуле:
  1. Указать правильный ответ Математическое ожидание случайной величины распределенной по нормальному закону распределения, равно:
  1. Указать правильный ответ. Математическое ожидание случайной величины распределенной по показательному закону распределения, равно:
  1. Указать правильный ответ.Дисперсия случайной величины распределенной по показательному закону распределения, равна:
  1. Указатьверную формулу. Для равномерного распределения математическое ожидание определяется по формуле:
  1. Указать верную формулу. Для равномерного распределения дисперсия определяется по формуле:
  1. Указать неверное утверждение. Свойства выборочной дисперсии:

а) если все варианты увеличить в одно и тоже число раз, то и дисперсия увеличится в такое же число раз.

б) дисперсия постоянной равняется нулю.

в) если все варианты увеличить на одно и тоже число, то выборочная дисперсия не изменится.+

  1. Указать верное утверждение. Оценкой параметров называют:

а) Представление наблюдений в качестве независимых случайных величин имеющих один и тот же закон распределения.

б) совокупность результатов наблюдений;

в) всякую функцию результатов наблюдения.+

  1. Указать верное утверждение. Оценки параметров распределений обладают свойством:

а) несмещенности;+

б) значимости;

в) важности.

  1. Указать неверное утверждение.

а) Метод максимального правдоподобия используется для получения оценок;

б) Выборочная дисперсия является смещенной оценкой для дисперсии;

в) В качестве статистических оценок параметров используются несмещённые, несостоятельные, эффективные оценки.+

  1. Указать неверное утверждение. Для функции распределения двумерной случайной величины справедливы свойства:

а) ; б) ; в) +.

  1. Указатьневерное утверждение:

а) По многомерной функции распределения всегда можно найти одномерные (маргинальные) распределения отдельных компонент.

б) По одномерным (маргинальным) распределениям отдельных компонент всегда можно найти многомерную функцию распределения.

в) По многомерной функции плотности всегда можно найти одномерные (маргинальные) плотности распределения отдельных компонент.

  1. Указать правильное утверждение. Дисперсия разности двух случайных величин определяется по формуле:

а); б)+; в) .

  1. Указать неверное утверждение. Формула вычисления совместной плотности:
  1. Указать неверное утверждение. Случайные величины X и Y называются независимыми, если:

а) Закон распределения случайной величины X не зависит от того, какое значение приняла случайная величина Y.

в) коэффициент корреляции между случайными величинами X и Y равен нулю.

  1. Указать правильный ответ. Формула является:

а) аналогом формулы Байеса для непрерывных случайных величин;

б) аналогом формулы полной вероятности для непрерывных случайных величин;+

в) аналогом формулы произведения вероятностей независимых событий для непрерывных случайных величин.

  1. Указать неверное определение:

а) Начальным моментом порядка двумерной случайной величины (X,Y) называется математическое ожидание произведения на, т.е.

б) Центральным моментом порядка двумерной случайной величины (X,Y) называется математическое ожидание произведения центрированных на, т.е.)

в) Корреляционным моментом двумерной случайной величины (X,Y) называется математическое ожидание произведения на, т.е. +

  1. Указать правильный ответ. Дисперсия случайной величины распределенной по нормальному закону распределения, равна:
  1. Указатьневерное утверждение. Простейшими задачами математической статистики являются:

а) выборка и группировка статистических данных, полученных в результате эксперимента;

б) определение параметров распределения, вид которого заранее известен;+

в) получение оценки вероятности изучаемого события.

Вариант№1

  1. В партии из 800 кирпичей есть 14 бракованных. Мальчик выбирает наугад один кирпич из этой партии и бросает его с восьмого этажа стройки. Какова вероятность, что брошенный кирпич окажется бракованным?
  2. Экзаменационный сборник по физике для 11 класса состоит из 75 билетов. В 12 из них встречается вопрос о лазерах. Какова вероятность, что ученик Степа, выбирая билет наугад, наткнется на вопрос о лазерах?
  3. На чемпионате по бегу на 100 м выступают 3 спортсмена из Италии, 5 спортсменов из Германии и 4 - из России. Номер дорожки для каждого спортсмена определяется жеребьевкой. Какова вероятность, что на второй дорожке будет стоять спортсмен из Италии?
  4. В магазин завезли 1500 бутылок водки. Известно, что 9 из них - просроченные. Найти вероятность того, что алкоголик, выбирающий одну бутылку наугад, в итоге купит именно просроченную.
  5. В городе работают 120 офисов различных банков. Бабуля выбирает один из этих банков наугад и открывает в нем вклад на 100 000 рублей. Известно, что во время кризиса 36 банков разорились, и вкладчики этих банков потеряли все свои деньги. Какова вероятность того, что бабуля не потеряет свой вклад?
  6. За одну 12-часовую смену рабочий изготавливает на станке с числовым программным управлением 600 деталей. Из-за дефекта режущего инструмента на станке получено 9 бракованных деталей. В конце рабочего дня мастер цеха берет одну деталь наугад и проверяет ее. Какова вероятность, что ему попадется именно бракованная деталь?

Зачет по теме: «Теория вероятности в задачах ЕГЭ»

Вариант№1

  1. На Киевском вокзале в Москве работают 28 окон билетных касс, рядом с которыми толпятся 4000 пассажиров, желающих купить билеты на поезд. По статистике, 1680 из этих пассажиров неадекватны. Найти вероятность того, что кассиру, сидящему за 17-м окном, попадется неадекватный пассажир (учитывая, что пассажиры выбирают кассу наугад).
  2. Банк «Русский стандарт» проводит лотерею для своих клиентов - держателей карт Visa Classic и Visa Gold. Будет разыграно 6 автомобилей Opel Astra, 1 автомобиль Porsche Cayenne и 473 телефона iPhone 4. Известно, что менеджер Вася оформил карту Visa Classic и стал победителем лотереи. Какова вероятность, что он выиграет автомобиль Opel Astra, если приз выбирается наугад?
  3. Во Владивостоке отремонтировали школу и поставили 1200 новых пластиковых окон. Ученик 11-го класса, который не хотел сдавать ЕГЭ по математике, нашел на газоне 45 булыжников и начал кидать их в окна наугад. В итоге, он разбил 45 окон. Найти вероятность того, что окно в кабинете директора окажется не разбитым.
  4. На американский военный завод поступила партия из 9000 поддельных микросхем китайского производства. Эти микросхемы устанавливаются в электронные прицелы для винтовки M-16. Известно, что 8766 микросхем в указанной партии неисправны, и прицелы с такими микросхемами будут работать неправильно. Найти вероятность того, что наугад выбранный электронный прицел работает правильно.
  5. Бабуля хранит на чердаке своего загородного дома 2400 банок с огурцами. Известно, что 870 из них давно протухли. Когда к бабуле приехал внучек, она подарила ему одну банку из своей коллекции, выбирая ее наугад. Какова вероятность того, что внучек получил банку с тухлыми огурцами?
  6. Бригада из 7 строителей-мигрантов предлагает услуги по ремонту квартир. За летний сезон они выполнили 360 заказов, причем в 234 случаях не убрали строительный мусор из подъезда. Коммунальные службы выбирают одну квартиру наугад и проверяют качество ремонтных работ. Найти вероятность того, что сотрудники коммунальных служб не наткнутся при проверке на строительный мусор.

Ответы:

Вар№1

ответ

0,0175

0,16

0,25

0,006

0,015

Вар №2

ответ

0,42

0,0125

0,9625

0,026

0,3625

0,35

ТЕСТ №1

Тема: Виды случайных событий, классическое определение вероятности,

элементы комбинаторики.

Вам предлагается 5 тестовых заданий по теме виды случайных событий, классическое определение вероятности, элементы комбинаторики. Среди предлагаемых вариантов ответов только один является верным.

Задание

Предлагаемые варианты ответов

Если появление события А влияет на значение вероятности события В, то про события А и В говорят, что они …

    совместные;

    несовместные;

    зависимые;

    независимые.

На гирлянде висят 5 флажков разного цвета. Посчитать количество возможных комбинаций из них, можно используя:

    формулу числа размещений;

    формулу числа перестановок;

    формулу числа сочетаний;

Среди поступивших в кассу 100 купюр – 8 фальшивых. Кассир наудачу вынимает одну купюру. Вероятность того, что эту купюру примут в банке, равна:

В 25 местный автобус входят 4 пассажира. Они могут занять какие угодно места в автобусе. Количество способов расположения этих людей в автобусе рассчитывается по формуле:

    числа перестановок;

    числа сочетаний;

    числа размещений;

Игральная кость брошена один раз. Выпадение числа «4» на верхней грани, является:

    достоверным событием;

    невозможным событием;

    случайным событием.

ТЕСТ №2

Тема: Теоремы сложения и умножения вероятностей.

Вам предлагается 5 тестовых заданий по теме теоремы сложения и умножения вероятностей. Среди предлагаемых вариантов ответов только один является верным.

Задание

Предлагаемые варианты ответов

Событие состоящее в том, что произойдет либо событие А , либо событие В можно обозначить:

    А–В ;

  1. А В ;

    Р А (В) .

Формула Р(А+В) = Р(А) + Р(В) , соответствует теореме сложения вероятностей:

    зависимых событий;

    независимых событий;

    совместных событий;

    несовместных событий.

Вероятность промаха для торпедного катера равна . Катер произвел 6 выстрелов. Вероятность того, что все 6 раз катер попал в цель, равна:

Вероятность совместного появления событий А и В обозначают:

Дана задача: в первом ящике – 5 белых и 3 красных шара, во втором – 3 белых и 10 красных шаров. Из каждого ящика наудачу взяли по одному шару. Определить вероятность того, что оба шара одного цвета. Для решения задачи используют:

    Теорему умножения вероятностей несовместных событий и теорему сложения вероятностей независимых событий.

    Теорему сложения вероятностей несовместных событий;

    Теорему умножения вероятностей независимых событий и теорему сложения вероятностей несовместных событий;

    Теорему умножения вероятностей зависимых событий;

ТЕСТ №3

Тема: Случайные независимые испытания по схеме Бернулли.

Вам предлагается 5 тестовых заданий по теме случайные независимые испытания по схеме Бернулли. Среди предлагаемых вариантов ответов только один является верным.

Предлагаемые варианты ответов

Дана задача: Вероятность того, что на странице студенческого реферата есть опечатка, равна 0,03. Реферат состоит из 8 страниц. Определить вероятность того, что ровно 5 из них с опечаткой.

    Формулу Бернулли;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона.

В семье планируют завести 5 детей. Если считать вероятность рождения мальчика 0,515, то – наивероятнейшее число девочек в семье равно:

Имеется группа, состоящая из 500 человек. Найти вероятность того, что у двух человек день рождения придется на Новый год. Считать, что вероятность рождения в фиксированный день равна .

Для решения этой задачи используют:

    Формулу Бернулли;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона.

Для определения вероятности того, что в 300 испытаниях событие А произойдет не менее 40 раз, если вероятность А в каждом испытании постоянна и равна 0,15, используют:

    Формулу Бернулли и теорему сложения вероятностей несовместных событий;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона, теорему сложения вероятностей несовместных событий, свойство вероятностей противоположных событий.

Дана задача: известно, что в некоторой местности в сентябре бывает 18 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце семи дней два дня окажутся дождливыми?

Для решения этой задачи используют:

    Формулу Бернулли;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона.

ТЕСТ №4

Тема: Одномерные случайные величины.

Вам предлагается 5 тестовых заданий по теме одномерные случайные величины, их способы задания и числовые характеристики. Среди предлагаемых вариантов ответов только один является верным.

Тесты по дисциплине «Теория вероятностей и математическая статистика»

Вариант 1

Чему равно математическое ожидание случайной величины Х?
а) 1; б) 2; в) 4; г) 2,5; д) 3,5.

х i

р i

y J

q J

Чему равно математическое ожидание случайной величины
?
а) 0,5; б) 0; в) 0,3; г) 2,2; д) 3.


Номер измерения

x i

Определить несмещенную оценку дисперсии.
а) 48,5; б) 341,7; в) 12,9; г) 63,42; д) 221,1.

Вариант 2

а) Формулу Бернулли; б) Локальную теорему Лапласа; в) Интегральную теорему Лапласа; г) Формулу Пуассона.

    Математическое ожидание случайной величины Х, распределенной по биномиальному закону равна:
    а) npq; б) np; в) nq; г) pq.

    Функция Лапласа обладает следующим свойством: Ф(0)=0.
    а) верно; б) неверно.

    Коэффициент корреляции характеризует степень тесноты линейной зависимости между случайными величинами
    а) верно; б) неверно.

    Матрица распределения системы двух дискретных случайных величин (Х,Y) задано таблицей

y i x i

Чему равна дисперсия случайной величины Y.
а) 2; б) 5; в) 3,5; г) 2,56; д) 2,2.

х i

р i

y J

q J

Чему равна дисперсия случайной величины
?

а) 0,9; б) 0,3; в) 1,15; г) 5,6; д) 0,21.