Плоская волна де бройля формула. Гипотеза и формула де Бройля

Французский ученый Луи де Бройль, осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул гипотезу об универсальности корпускулярно-волнового дуализма . Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики – энергия Е и импульс р , а с другой – волновые характеристики – частота n и длина волны l . Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов:

Смелость гипотезы де Бройля заключалась именно в том, что соотношение (1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля :

Это соотношение справедливо для любой частицы с импульсом р .

Определим некоторые основные свойства волн де Бройля. Рассмотрим свободно движущуюся со скоростью v частицу массой m . Вычислим для нее фазовую и групповую скорости волн де Бройля. Итак, фазовая скорость:

, (3)

где и , – волновое число. Так как c>v , то фазовая скорость волн де Бройля больше скорости света в вакууме.

Групповая скорость: .

Для свободной частицы, согласно теории относительности Эйнштейна, справедливо , тогда

.

Следовательно, групповая скорость волн де Бройля равна скорости частицы.

Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя. Значит, необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

В. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой и импульсом. Согласно соотношению неопределенностей Гейзенберга , микрочастица (микрообъект) не может иметь одновременно и определенную координату (x, y, z ), и определенную соответствующую проекцию импульса (p x , p y , p z ), причем неопределенности этих величин удовлетворяют условиям

т.е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h .

Из соотношения неопределенностей (4) следует, что, например, если микрочастица находится в состоянии с точным значением координаты (Dx =0), то в этом состоянии (Dp x ®¥), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременно с любой наперед заданной точностью измерить координату и импульс микрообъекта. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является , таким образом, квантовым ограничением применимости классической механики к микрообъектам .

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t , т.е. неопределенности этих величин удовлетворяют условию

Подчеркнем, что – неопределенность энергии некоторого состояния системы, Dt – промежуток времени, в течение которого оно существует. Следовательно, система, имеющая среднее время жизни Dt , не может быть охарактеризована определенным значением энергии; разброс энергии возрастает с уменьшением среднего времени жизни. Из выражения (5) следует, что частота излученного фотона также должна иметь неопределенность , т.е. линии спектра должны характеризоваться частотой, равной . Опыт действительно показывает, что все спектральные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.

2. Волновая функция и ее свойства

Итак, квантовая механика описывает законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Однако при этом отмечается, что волны де Бройля (микрочастицы) не обладают всеми свойствами электромагнитных волн. Например, электромагнитные волны представляют собой распространяющееся в пространстве электромагнитное поле. Распространение волн де Бройля не связано с распространением в пространстве какого-либо электромагнитного поля. Экспериментально доказано, что равномерно и прямолинейно движущиеся заряженные частицы не излучают электромагнитных волн.

Из опытов по дифракции электронов следует, что в этих экспериментах обнаруживается неодинаковое распределение пучков электронов, отраженных или рассеянных по различным направлениям: в некоторых направлениях наблюдается большее число электронов, чем во всех других. С волновой точки зрения наличие максимумов числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Другими словами, интенсивность волн в данной точке пространства определяет плотность вероятности попадания электронов в эту точку. Это послужило основанием для своеобразного статистического, вероятностного истолкования волн де Бройля.

Единственное правильное толкование волн материи, позволяющее согласовать между собой описанные факты, это статистическое толкование : интенсивность волны пропорциональна вероятности обнаружить частицу в данном месте. Для того, чтобы описать распределение вероятности нахождения частицы в данный момент времени в некоторой точке пространства, вводят функцию , называемую волновой функцией (или псифункцией). Определяли ее так, чтобы вероятность dW того, что частица находится в элементе объема dV , равнялась произведению и элемента объема dV :

Физический смысл имеет не сама функция Y, а квадрат ее модуля: , где Y * – функция, комплексно сопряженная с Y. Величина имеет смысл плотности вероятности : , т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами x, y, z . Так как пребывание частицы где-либо в пространстве есть достоверное событие и его вероятность должна быть равна единице, то это значит, что волновая функция удовлетворяет условию нормировки вероятностей :

Итак, в квантовой механике состояние микрочастиц описывается принципиально по новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Это налагает на волновую функцию ряд ограничительных условий. Функция Y, характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть:

1. конечной (вероятность не может быть больше единицы);

2. однозначной (вероятность не может быть неоднозначной величиной);

3. непрерывной (вероятность не может изменяться скачком).

Волновая функция удовлетворяет принципу суперпозиции : если система может находиться в различных состояниях, описываемых волновыми функциями , то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:

где С n (n =1, 2, …) – произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей .

Волновая функция, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект:

.

где интегрирование ведется по всему бесконечному пространству, как и в случае (7).

3. Уравнение Шредингера.

Статистическое истолкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающем движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции , так как именно она, или, точнее, величина , определяет вероятность пребывания частицы в момент времени t в объеме dV , т.е. в области с координатами x и x +dx , y и y +dy , z и z +dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется . Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид:

, (8)

где , m – масса частицы, D – оператор Лапласа , i – мнимая единица, – функция потенциальной энергии частицы в силовом поле, в котором она движется, – искомая волновая функция частицы.

Уравнение (8) справедливо для любой частицы, движущейся с малой (по сравнению со скоростью света) скоростью, т.е. v<. Оно дополняется условиями, накладываемыми на волновую функцию:

1) функция Y должна быть конечной , непрерывной и однозначной ;

2) производные должны быть непрерывны ;

3) функция должна быть интегрируема , т.е. интеграл должен быть конечным .

Уравнение (8) является общим уравнением Шредингера. Его также называют временным уравнением Шредингера , так как оно содержит производную от функции Y по времени. Однако для большинства физических явлений, происходящих в микромире, уравнение (8) можно упростить, исключив зависимость Y от времени, иными словами найти уравнение Шредингера для стационарных состояний – состояний с фиксированными значениями энергии . Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция явно не зависит от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая – только времени, причем зависимость от времени выражается множителем , так что

где Е – полная энергия частицы, постоянная в случае стационарного поля. Подставляя это в (8), получим

откуда придем к уравнению, определяющему функцию y :

. (9)

Уравнение (9) называется уравнением Шредингера для стационарных состояний . В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются упомянутые выше условия регулярности волновых функций. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y . Но регулярные решения имеют место не при любых значениях параметра Е , а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными . Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями . Собственные значения Е могут образовать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном , или сплошном , спектре, во втором – о дискретном спектре .

4. Ядерная модель атома.

Общепринятую сегодня ядерную (планетарную) модель атома предложил Э. Резерфорд. Согласно этой модели, вокруг положительного ядра, имеющего заряд Ze (Z – порядковый номер элемента в системе Менделеева, е – элементарный заряд), размер 10 -15 -10 -14 м и массу, практически равную массе атома, в области с линейными размерами порядка 10 -10 м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т.е. вокруг ядра вращается Z электронов.

Попытки построить модель атома в рамках классической физики не привели к успеху. Преодоление возникших трудностей потребовало создания качественно новой – квантовой – теории атома. Первая попытка построения такой теории была предпринята Нильсом Бором. В основу своей теории Бор положил два постулата.

Первый постулат Бора (постулат стационарных состояний) : в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состоянием атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющее условию

где m e – масса электрона, v – его скорость по n -ой орбите радиуса r n .

Второй постулат Бора (правило частот) : при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

равной разности энергий соответствующих стационарных состояний (E n и E m – соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При E n <E m происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т.е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при E n >E m – его поглощение (переход атома в состояние с большей энергией, т.е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот квантовых переходов определяет линейчатый спектр атома.

Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем – систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы He + , Li 2+). Следуя Бору, рассмотрим движение электрона в такой системе, ограничиваясь круговыми стационарными орбитами. Решая совместно уравнение , предложенное Резерфордом, и уравнение (10), получим выражение для радиуса n -й стационарной орбиты:

.

Откуда следует, что радиусы орбит растут пропорционально квадратам целых чисел. Для атома водорода (Z =1) радиус первой орбиты электрона при n =1, называемый первым боровским радиусом (а ), равен

,

что соответствует расчетам на основании кинетической теории газов.

Кроме этого, учитывая квантованные для радиуса n -й стационарной орбиты значения, можно показать, что энергия электрона может принимать только следующие дозволенные дискретные значения:

,

где знак минус означает, что электрон находится в связанном состоянии.

5. Атом водорода в квантовой механике.

Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия He + , двукратно ионизированного лития Li ++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z =1),

,

где r – расстояние между электроном и ядром.

Состояние электрона в атоме водорода описывается волновой функцией y , удовлетворяющей стационарному уравнению Шредингера (9), учитывающему предыдущее значение потенциальной энергии:

, (12)

где m – масса электрона, Е – полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (12) обычно используют сферическую систему координат: r , q , j . Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важнейших результатов, которые из него следуют.

1. Энергия . В теории дифференциальных уравнений доказывается, что уравнения типа (27) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции y , только при собственных значениях энергии

, (13)

т.е. для дискретного набора отрицательных значений энергии. Самый нижний уровень Е 1 , отвечающий минимальной возможной энергии, - основной , все остальные (E n >E 1 , n =1, 2, 3, …) – возбужденные . При E <0 движение электрона является связанным , а при E >0 – свободным ; область непрерывного спектра Е >0 соответствует ионизированному атому . Выражение (13) совпадает с формулой, полученной Бором для энергии атома водорода. Однако если Бору пришлось вводить дополнительные гипотезы (постулаты), то в квантовой механике дискретные значения энергии, являясь следствием самой теории, вытекают непосредственно из решения уравнения Шредингера.

2. Квантовые числа . В квантовой механике доказывается, что уравнению Шредингера (12) удовлетворяют собственные функции , определяемые тремя квантовыми числами: главным n , орбитальным l и магнитным m l .

Главное квантовое число n , согласно (13), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с единицы:

n =1, 2, 3, …

Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется , т.е. не может быть произвольным, а принимает дискретные значения, определяемые формулой

где l орбитальное квантовое число , которое при заданном n принимает значения l =0, 1, …, (n -1), т.е. всего n значений, и определяет момент импульса электрона в атоме.

Из решения уравнения Шредингера следует также, что вектор L l момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция L lz на направление z внешнего магнитного поля принимает квантованные значения, кратные:

Рис. 1

где m l магнитное квантовое число , которое при заданном l может принимать значения m l =0, ±1, ±2, …, ±l , т.е. всего 2l +1 значений. Таким образом, магнитное квантовое число m l определяет проекцию момента импульса электрона на заданное направление , причем вектор момента импульса электрона в атоме может иметь в пространстве 2l +1 ориентаций.

Вероятность обнаружения электрона в различных частях атома различна. Электрон при своем движении как бы «размазан» по всему объему, образуя электронное облако, плотность (густота) которого характеризует вероятность нахождения электрона в различных точках объема атома. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число m l характеризует ориентацию электронного облака в пространстве .

3. Спектр . Светящиеся газы дают линейчатые спектры испускания. В соответствии с законом Кирхгофа спектры поглощения газов также имеют линейчатую структуру. Все сериальные формулы спектра водорода могут быть выражены единой формулой, называемой обобщенной формулой Бальмера :

, (16)

где R =3,293×10 15 с -1 – постоянная Ридберга , m и n – целые числа, причем для данной серии n =m +1, m +2, m +3 и т.д. Всего различают шесть серий спектральных линий: серия Лаймана (m =1), серия Бальмера (m =2), серия Пашена (m =3), серия Брэкета (m =4), серия Пфунда (m =5), серия Хэмфри (m =6) (рис. 1).

6. Спин электрона. Принцип Паули. Принцип неразличимости

тождественных частиц.

В 1922 г. было обнаружено, что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса электрона равен нулю (14). Магнитный момент атома, связанный с орбитальным движением электрона, пропорционален механическому моменту, поэтому он равен нулю и магнитное поле не должно оказывать влияния на движение атомов водорода в основном состоянии, т.е. расщепления быть не должно.

Для объяснения этого явления, а также ряда других трудностей в атомной физике было предложено, что электрон обладает собственным неуничтожимым механическим моментом импульса , не связанным с движением электрона в пространстве, – спином . Спин электрона (и всех других частиц) – квантовая величина, у нее нет классического аналога; это внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

Если электрону приписывается собственный механический момент импульса (спин) L s , то ему соответствует собственный магнитный момент. Согласно общим выводам квантовой механики, спин квантуется по закону

,

где s спиновое квантовое число .

По аналогии с орбитальным моментом импульса, проекция L sz спина квантуется так, что вектор L s может принимать 2s +1 ориентаций. Так как в опытах наблюдались только две ориентации, то 2s +1=2, откуда s =1/2. Проекция спина на направление внешнего магнитного поля, являясь квантованной величиной, аналогичным (15):

где m s магнитное спиновое квантовое число ; оно может иметь только два значения: .

Распределение электронов в атоме подчиняется квантово-механическому закону, называемому принципом Паули или принципом исключения . В своей простейшей формулировке он гласит: «В любом атоме не может быть двух электронов, находящихся в двух одинаковых стационарных состояниях, определяемых набором четырех квантовых чисел: главного n , орбитального l , магнитного m l и спинового m s », т.е. Z(n, l, m l , m s) =0 или 1, где Z(n, l, m l , m s) – число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел: n, l, m l , m s . Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями по крайней мере одного квантового числа.

Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n , называют электронной оболочкой . В каждой из оболочек электроны распределяются по подоболочкам , соответствующим данному l . Поскольку орбитальное квантовое число принимает значения от 0 до n -1, число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l +1).

Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлементным системам, то проявляются особые свойства, не имеющие аналога в классической физике. Пусть квантово-механическая система состоит из одинаковых частиц, например, электронов. Все электроны имеют одинаковые физические свойства – массу, электрический заряд, спин и другие внутренние характеристики. Такие частицы называются тождественными .

Необычные свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики – принципе неразличимости тождественных частиц , согласно которому невозможно экспериментально различить тождественные частицы. В классической механике даже одинаковые частицы можно различить по положению в пространстве и импульсам, т.е. классические частицы обладают индивидуальностью.

В квантовой механике положение иное. Из соотношения неопределенностей вытекает, что для микрочастиц вообще неприменимо понятие траектории; состояние микрочастицы описывается волновой функцией, позволяющей вычислять лишь вероятность () нахождения микрочастицы в окрестностях той или иной точки пространства. Если же волновые функции двух тождественных частиц в пространстве перекрываются, то разговор о том, какая частица находится в данной области, вообще лишен смысла: можно говорить лишь о вероятности нахождения в данной области одной из тождественных частиц. Таким образом, в квантовой механике тождественные частицы полностью теряют свою индивидуальность и становятся неразличимыми.

7. Квантовые статистики. Вырожденный газ.

Основная задача статистической физики в квантовых статистиках состоит в нахождении функции распределения частиц системы по тем или другим параметрам – координатам, импульсам, энергиям и т.п., а также в отыскании средних значений этих параметров, характеризующих макроскопическое состояние всей системы частиц. Для систем фермионов и бозонов эти задачи решаются единообразно, но несколько различно в связи с тем, что бозоны не подчиняются принципу Паули. В соответствии с этим различаются две квантовые статистики: Ферми-Дирака и Бозе-Эйнштейна, в рамках которых определен вид функции распределения частиц системы по энергиям.

Напомним, что функция распределения по энергиям представляет собой долю от общего числа частиц, которые имеют энергию в интервале значений от W до W+dW :

,

где N – общее число частиц, f(W) – функция распределения по энергиям.

Для системы из n невзаимодействующих фермионов с энергией W (идеальный Ферми-газ) или системы из n невзаимодействующих бозонов с энергией W (идеальный Бозе-газ) были определены похожие функции распределения:

, (17)

где k – постоянная Больцмана, Т – термодинамическая температура, m - химический потенциал, представляющий собой изменение энергии системы при изменении на единицу числа частиц системы при изохорном или изоэнтропийном процессе. В рамках статистики Ферми-Дирака в (32) берут знак «+», т.е. в этом случае . Соответственно для Бозе-газа – знак «-» и .

Газ называется вырожденным , если его свойства отличаются от свойств классического идеального газа. В вырожденном газе происходит взаимное квантово-механическое влияние частиц газа, обусловленное неразличимостью тождественных частиц. Поведение фермионов и бозонов различно при вырождении.

Для характеристики степени вырождения газа вводится параметр вырождения А :

Функция распределения с помощью параметра вырождения для обеих квантовых статистик запишется в виде:

.

Если параметр вырождения мал A<<1, то и функция распределения превращается в функцию распределения Максвелла-Больцмана , лежащую в основе классической статистики невырожденного газа:

Температурой вырождения называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц. Сравнительно легко можно грубо оценить температурный критерий вырождения газа. Вырождение обычных газов сказывается при низких температурах. Для фотонного и электронного газа в металлах это не справедливо. Электронный газ в металлах практически всегда вырожден. Только при температурах выше нескольких десятков тысяч градусов электроны металла подчинялись бы классической статистике Максвелла-Больцмана. Но существование металлов в конденсированном состоянии при таких температурах невозможно. Поэтому классическое описание поведения электронов в металлах приводит в электродинамике в ряде случаев к законам, резко противоречащих опыту. В полупроводниках концентрация электронного газа много меньше, чем в металлах. В этих условиях температура вырождения составляет порядка 10 -4 К и электронный газ в полупроводниках является невырожденным и подчиняется классической статистике. Примером вырожденного газа служит фотонный газ. Так как масса фотона равна нулю, то температура вырождения стремится к бесконечности. Фотонный газ при любой температуре является вырожденным. Атомные и молекулярные газы имеют весьма малые температуры вырождения. Например, для водорода при нормальных условиях температура вырождения составляет около 1 К. Для остальных газов, более тяжелых, чем водород, она еще меньше. Газы при нормальных условиях не бывают вырождены. Вырождение, связанное с квантовыми свойствами газов, проявляется значительно меньше, чем отклонение газов от идеальности, вызванное межмолекулярными взаимодействиями.

Максимальная энергия, которую могут иметь электроны проводимости в кристалле при 0 К называется энергией Ферми и обозначается E F . Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми . Уровню Ферми соответствует энергия Ферми, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать от уровня Ферми, т.е. от верхнего из занятых электронами энергетических уровней.

8. Понятие о зонной теории твердых тел.

Используя уравнение Шредингера, в принципе можно рассмотреть задачу о кристалле, например найти возможные значения его энергии, а также соответствующие энергетические состояния. Однако как в классической, так и в квантовой механике отсутствуют методы точного решения такой задачи для случая многих частиц. Поэтому эта задача решается приближенно сведением задачи многих частиц к одноэлектронной задаче об одном электроне, движущемся в заданном внешнем поле. Подобный путь приводит к зонной теории твердого тела .

Рис. 2

Пока атомы изолированы, т.е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней. При образовании кристаллической решетки, т.е. при сближении атомов до межатомных расстояний решетки, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются в зоны, образуя зонный энергетический спектр . На рис. 2 показано расщепление энергетических уровней в зависимости от расстояния между атомами. Видно, что заметно расщепляются и расширяются лишь уровни внешних, валентных электронов, наиболее слабо связанных с ядром и имеющих наибольшую энергию, а также более высокие уровни, которые в основном состоянии атома вообще электронами не заняты. Уровни же внутренних электронов либо совсем не расщепляются, либо расщепляются слабо. Таким образом, в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, валентные же электроны «коллективизированы» – принадлежат всему твердому телу.

Энергия внешних электронов может принимать значения в пределах закрашенных на рис. 2 областей, называемых разрешенными энергетическими уровнями . Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл: чем больше в кристалле атомов, тем теснее расположены уровни в зоне. Расстояние между соседними энергетическими уровнями столь ничтожно (порядка 10 -22 эВ), что зоны можно считать практически непрерывными, однако факт конечного числа уровней в зоне играет важную роль для распределения электронов по состояниям. Разрешенные энергетические зоны разделены зонами запрещенных значений энергий, называемыми запрещенными энергетическими зонами . В них электроны находиться не могут. Ширина зон (разрешенных и запрещенных) не зависит от размера кристалла. Разрешенные зоны тем шире, чем слабее связь валентных электронов с атомами.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон. Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. В общем случае можно говорить о валентной зоне , которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне) , которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая (рис. 3).

На рис. 3, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т.е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны,

Высказал смелую гипотезу о сходстве между светом и частицами вещества, что если свет обладает корпускулярными свойствами, то и материальные частицы, в свою очередь, должны обладать волновыми свойствами. Движению любой частицы, обладающей импульсом , сопоставляется волновой процесс с длиной волны:

Это выражение называется длиной волны де Бройля для материальной частицы.

Существование волн де Бройля может быть установлено лишь на основе опытов, в которых проявляется волновая природа частиц. Так как волновая природа света проявляется в явлениях дифракции и интерференции, то для частиц, обладающих по гипотезе де Бройля волновыми свойствами, должны также обнаруживаться эти явления.

Трудности наблюдения волновых свойств частиц были связаны с тем, что в макроскопических явлениях эти свойства не проявляются.

Зафиксировать такую короткую длину волны не удается ни в одном из опытов. Однако если рассматривать электроны, масса которых очень мала, то длина волны станет достаточной для ее экспериментального обнаружения. В 1927 г. гипотеза де Бройля была подтверждена экспериментально в опытах американских физиков Дэвиссона и Джермера.

Простые расчеты показывают, что длины волн, связанных с частицами, должны быть очень малы, т.е. значительно меньше длин волн видимого света. Поэтому дифракцию частиц можно было обнаружить не на обычной дифракционной решетке для видимого света (с постоянной решетки ), а на кристаллах, атомы в которых расположены в определенном порядке на расстояниях друг от друга ≈ .

Вот почему в своих опытах Дэвиссон и Джермер изучали отражение электронов от монокристалла никеля, принадлежащего к кубической системе.

Схема опыта представлена на рис. 20.1. В вакууме узкий пучок моноэнергетических электронов, получаемый с помощью электронно-лучевой трубки 1, направлялся на мишень 2 (поверхность монокристалла никеля, сошлифованная перпендикулярно к большой диагонали кристаллической ячейки). Отраженные электроны улавливались детектором 3, соединенным с гальванометром. Детектором, который можно было устанавливать под любым углом относительно падающего луча, улавливались только те электроны, которые испытывали упругое отражение от кристалла.

По силе электрического тока в гальванометре судили о количестве электронов, зарегистрированных детектором. Оказалось, что при отражении электронных пучков от поверхности металла наблюдается картина, которую невозможно предсказать на основе классической теории. Число электронов, отраженных в некоторых направлениях, оказалось больше, а в некоторых меньше, чем следовало ожидать. То есть возникало избирательное отражение в определенных направлениях. Особенно интенсивно рассеяние электронов происходило под углом при ускоряющем напряжении .


Объяснить результаты эксперимента оказалось возможным лишь на основе волновых представлений об электронах. Атомы никеля, расположенные на шлифованной поверхности, образуют регулярную отражательную дифракционную решетку. Ряды атомов перпендикулярны плоскости падения. Расстояние между рядами d = 0,091 нм . Эта величина была известна из рентгенографических исследований. Энергия электронов невелика и они не проникают глубоко в кристалл, поэтому рассеяние электронных волн происходит на поверхностных атомах никеля. В некоторых направлениях рассеянные от каждого атома волны усиливают друг друга, в других - происходит их гашение. Усиление волн произойдет в тех направлениях, в которых разность расстояний от каждого атома до точки наблюдения равняется целому числу длин волн (рис. 20.2).

Для бесконечно удалённой точки условие усиления рассеянных волн запишется в виде 2dsinθ = (формула Бреггов , n − порядки дифракционных максимумов). Для и значения угла дифракции соответствует длина волны

нм. (20.2)

Поэтому движение каждого электрона можно описать с помощью волны с длиной 0,167 нм .

Формула де Бройля (20.1) приводит к такому же результату для длины волны. Электрон, ускоренный в электрическом поле разностью потенциалов , обладает кинетической энергией . Так как модуль импульса частицы связан с ее кинетической энергией соотношением , то выражение (20.1) для длины волны можно записать в виде: . (20.3)

Подставив в (20.3) численные значения величин, получим:

Оба результата хорошо совпадают, что подтверждает наличие волновых свойств у электронов.

В 1927 г. волновые свойства электронов были подтверждены в независимых экспериментах Томсона и Тартаковского. Ими были получены дифракционные картины при прохождении электронов через тонкие металлические пленки.

В опытах Томсон электроны в электрическом поле разгонялись до больших скоростей при ускоряющем напряжении , что соответствовало длинам волн электронов от до (согласно формуле (20.3)). При этом вычисления проводились по релятивистским формулам. Тонкий пучок быстрых электронов направлялся на золотую фольгу толщиной Использование быстрых электронов связано с тем, что более медленные электроны сильно поглощаются фольгой. За фольгой помещали фотопластинку (рис.20.3).


Действие электронов на фотопластинку аналогично действию быстрых фотонов рентгеновского диапазона при прохождения их через фольгу из алюминия.

Другое доказательство дифракции электронов в кристаллах дают сходные снимки электронограммы и рентгенограммы одного и того же кристалла. С помощью этих снимков можно определить постоянную кристаллической решетки. Вычисления, проведенные с помощью двух различных методов, приводят к одинаковым результатам.После продолжительной бомбардировки фольги электронами на фотопластинке образовывалось центральное пятно, окруженное дифракционными кольцами. Происхождение дифракционных колец такое же, как и в случае дифракции рентгеновских лучей.

Наиболее наглядные экспериментальные результаты, подтверждающие волновую природу электронов, получены в опытах по дифракции электронов

Рис. 20.4

на двух щелях (рис. 20.4), выполненных впервые в 1961 г. К. Йёнсоном. Эти опыты - прямая аналогия опыта Юнга для видимого света.

Поток электронов, ускоренных разностью потенциалов 40 кВ, после прохождения двойной щели в диафрагме попадал на экран (фотопластинку). В местах попадания электронов на фотопластинке образуются темные пятна. При большом числе электронов на фотопластинке наблюдается типичная интерференционная картина в виде чередующихся максимумов и минимумов интенсивности электронов, полностью аналогичная интерференционной картине для видимого света. Р 12 − вероятность попадания электронов в различные участки экрана на расстоянии x от центра. Максимальная вероятность соответствует дифракционному максимуму, нулевая вероятность - дифракционному минимуму

Характерно, что все описанные результаты опытов по дифракции электронов наблюдаются и в том случае, когда электроны пролетают через экспериментальную установку “поодиночке”. Этого можно добиться при очень малой интенсивности потока электронов, когда среднее время пролета электрона от катода до фотопластинки меньше, чем среднее время между испусканием двух последующих электронов с катода. На рис. 20.5 показаны фотопластинки после попадания различного числа электронов (экспозиция возрастает от рис. 20.5а к рис. 20.5в).

Последовательное попадание на фотопластинку все возрастающего количества одиночных электронов постепенно приводит к возникновению четкой дифракционной картины. Описанные результаты означают, что в данном эксперименте электроны, оставаясь частицами, проявляют также волновые свойства, причем эти волновые свойства присущи каждому электрону в отдельности, а не только системе из большого числа частиц.

В 1929 г. Штерн и Эстерман показали, что и атомы гелия () и молекулы водорода () также претерпевают дифракцию. Для тяжелых химических элементов длина волны де Бройля очень мала, поэтому дифракционные картины либо совсем не получались, либо были весьма расплывчатыми. Для легких атомов гелия и молекул водорода средняя длина волны при комнатной температуре порядка 0,1 нм, то есть того же порядка, что и постоянная кристаллической решетки. Пучки этих атомов не проникали вглубь кристалла, поэтому дифракция молекул осуществлялась на плоских двумерных решетках поверхности кристалла, аналогично дифракции медленных электронов на плоской поверхности кристалла никеля () в опытах Дэвиссона и Джермера. В результате наблюдались четкие дифракционные картины. Позднее была обнаружена дифракция на решетках кристаллов очень медленных нейтронов.

О.С.Агеева, Т.Н.Строганова, К.С.Чемезова

ЭЛЕМЕНТЫ КВАНТОВОЙ

МЕХАНИКИ И ФИЗИКИ ТВЕРДОГО ТЕЛА

Тюмень. 2009


УДК 537(075):621.38

Агеева О.С., Строганова Т.Н., Чемезова К.С. Элементы квантовой механики и физики твердого тела: Учебное пособие. – Тюмень, -ТюмГНГУ, 2009. – 135 с.

В кратком виде излагаются физические основы квантовой механики, теория движения в поле потенциальных сил, изучаются туннельный эффект, атом водорода, физические основы работы лазеров.

Рассматриваются зонная теория твердых тел, электронная теория проводимости металлов и полупроводников, физические процессы в металлах, полупроводниках, p-n-переходах, обсуждаются вопросы, связанные с работой конкретных полупроводниковых и микроэлектронных приборов.

Предназначено для студентов технических специальностей ТюмГНГУ.

Ил. 79, табл.5.

Рецензенты: В.А.Михеев, кандидат физ.-мат. наук, заведующий кафедрой радиофизики Тюменского государственного университета; В.Ф.Новиков, доктор физ.-мат. наук, профессор, заведующий кафедрой физики №1 ТюмГНГУ.

© Издательство «Нефтегазовый университет», 2009


ПРЕДИСЛОВИЕ

Громадный прогресс в области электротехники и электроники в значительной мере связан с успехами физики твердого тела, поэтому современный инженер независимо от специальности должен обладать некоторым минимумом знаний в этой области науки. В свою очередь, физика твердого тела базируется на квантовой механике.

Квантовая механика - это наука о движении микрочастиц – электронов, нуклонов, атомов. Эти частицы подчиняются иным законам, чем макроскопические тела, состоящие из многих атомов. Основной особенностью микрочастиц является то, что они обладают свойствами волны. При этом многие характеристики частиц (энергия, импульс, момент импульса) в большинстве случаев могут иметь лишь дискретные значения и изменяться только определенными порциями – квантами. Отсюда и произошло название – квантовая механика.



Имеющаяся в настоящее время специальная литература по квантовой механике и физике твердого тела предполагает подробное, детальное изучение предмета; она использует достаточно сложный математический аппарат и не рассчитана на студента, для которого данная дисциплина не является основной. В то же время в учебниках по общему курсу физики ряд вопросов, связанных со свойствами твердых тел, либо освещен недостаточно, либо не рассматривается совсем. Связь между уравнениями квантовой механики, их решениями и работой современных электронных, оптических и оптоэлектронных приборов, как правило, не просматривается.

Авторы настоящего пособия сделали попытку частично восполнить существующий пробел в учебной литературе по квантовой механике и физике твердого тела и изложить некоторые разделы этого большого и сложного курса в форме, доступной для студента технического ВУЗа, изучающего курс общей физики на младших курсах. Главное внимание в пособии уделено рассмотрению свойств металлов и полупроводников с позиций зонной теории твердых тел.

Основные вопросы квантовой механики изложены в главе 1. В ней же даны основы работы лазеров. Главы 2-4 посвящены анализу поведения электронов в кристаллах, электрофизическим свойствам металлов и полупроводников. Наиболее подробно рассмотрено явление проводимости полупроводников, приведены примеры практического применения данного явления. В главах 5-7 рассмотрен p-n- переход и ряд оптических явлений в полупроводниках. В этой части пособия значительное внимание уделено физическим процессам, лежащим в основе работы современных полупроводниковых и микроэлектронных приборов.


ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ

Гипотеза де Бройля. Корпускулярно-волновой дуализм микрочастиц

В 1924г. Луи де Бройль выдвинул гипотезу: корпускулярно-волновая двойственность свойств, установленная для света, имеет универсальный характер. Все частицы, имеющие конечный импульс, обладают волновыми свойствами. Движению частиц соответствует некоторый волновой процесс.

С каждым движущимся микрообъектом связываются корпускулярные характеристики: энергия E и импульс и волновые характеристики - длина волны λ или частота ν. Полная энергия частицы и ее импульс определятся формулами

; (1.1.1)

. (1.1.2)

Длина волны, связанной с движущейся частицей, определится выражением

. (1.1.3)

Экспериментальное подтверждение гипотезы де Бройля получено в опытах по дифракции электронов на кристаллах. Рассмотрим кратко сущность этих опытов.

Недостаточность теории Бора сделала необходимым критический пересмотр основ квантовой теории и представлений о природе элементарных частиц (электронов, протонов и т. п,). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными координатами и определенной скоростью.

В результате углубления наших знаний о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм (см. § 57). Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комп-тона).

В 1924 г. Луи де-Бройль выдвинул смелую гипотезу, что дуалн-зм не является особенностью одних только оптических явлений, но имеет универсальное значение. «В оптике, - писал он, - в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?»

Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де-Бройль перенес на случай частиц вещества те же правила пе-

рехода от одной картины к другой, какие справедливы в случае света. Фотон, как известно [см. формулы (57.1) и (57.4)], обладает энергией

и импульсом

По идее де-Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого равна

а частота

Гипотеза де-Бройля вскоре была блестяще подтверждена экспериментально. Дэвиссон и Джермер обнаружили, что пучок электронов, рассеивающийся от кристаллической пластинки, дает дифракционную картину. Томсон и независимо от него Тартаковский получили дифракционную картину при прохождении электронного пучка через металлическую фольгу. Опыт осуществлялся следующим образом (рис. 190). Пучок электронов, ускоренных разностью потенциалов порядка нескольких десятков киловольт, проходил через тонкую металлическую фольгу и попадал на фотопластинку. Электрон при ударе о фотопластинку оказывает на нее такое же действие, как и фотон. Полученная таким способом электронограмма золота (рис. 191, а) сопоставлена с полученной в аналогичных условиях рентгенограммой алюминия (рис. 191,6). Сходство обеих картин поразительно.

Штерн и его сотрудники показали, что дифракционные явления обнаруживаются также у атомных и молекулярных пучков. Во всех перечисленных случаях

дифракционная картина соответствует длине волны, определяемой соотношением (64.1).

Из описанных опытов с несомненностью вытекает, что пучок микрочастиц определенной скорости и

■аправлеиия дает дифракционную картину, подобную картине, получаемой от плоской волны.

Дифракция электронов - процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет волновые свойства. Данное явление называется корпускулярно-волновым дуализмом , в том смысле, что частица вещества(в данном случае взаимодействующие электроны) может быть описана, как волна.

ДИФРАКЦИЯ НЕЙТРОНОВ - явление рассеяния нейтронов, в к-ром определяющую роль играют волновые свойства нейтрона (см. Корпускулярно-волновой дуализм ).Длина волны и импульс р связаны соотношением де Бройля =hp . Матем. описание Д. н., так же как и в случае др. волновых полей, следует из принципа Гюйгенса - Френеля и, в этом смысле, аналогично описаниюдифракции света , рентг. лучей, электронов и др. микрочастиц (см. Дифракция волн ).Согласно этому описанию, интенсивность рассеянного излучения в некрой точке пространства зависит как от , так и от свойств рассеивающего объекта. Соответственно, Д. н. применяется как для исследования или формирования нейтронных пучков (нейтронные монохроматоры, анализаторы), так и для исследований строения рассеивающего вещества.

Рис. 1. Угловое распределение нейтронов с энергией 14 МэВ, рассеянных на ядре Sn; - сечение рассеяния; - угол рассеяния.

Оценка энергии нулевых колебаний осциллятора. Будем действовать точно так же, как и в предыдущем примере. Энергия классического одномерного гармонического осциллятора описывается выражением

E = px2 / 2m + mω2x2 / 2.

Рассматривая px и х как неопределенности импульса и координаты осциллирующего микрообъекта и пользуясь в качестве соотношения неопределенностей равенством pxх = h, получаем

Е(px) = px2 / 2m + mω2h2 / 2px2 .

Приравнивая к нулю производную, находим величину

р0 = mωh, при которой функция Е(px) принимает минимальное значение. Легко убедится, что это значение равно

Е = Е(p0) = hω.

Этот результат весьма интересен. Он показывает, что в квантовой механике энергия осциллятора не может обратиться в нуль; ее минимальное значение оказывается порядка hω. Это есть так называемая энергия нулевых колебаний.

Учитывая существование нулевых колебаний, можно прийти, в частности, к следующему интересному заключению: энергия колебательного движения атомов кристалла не обращается в не обращается в нуль даже при температуре абсолютного нуля.

Нулевые колебания иллюстрируют принципиальное общее обстоятельство: нельзя реализовать микрообъект на «дне потенциальной ямы», или, иначе говоря, «микрообъект не может упасть на дно потенциальной ямы». Этот вывод не зависит от вида потенциальной ямы, так как является прямым следствием соотношений неопределенности импульса; в этом случае неопределенность координаты должна стать сколь угодно большой, что противоречит самому факту пребывания микрообъекта в потенциальной яме.

Туннелирование электрона через потенциальный барьер является принципиально квантово-механическим эффектом, который не имеет аналога в классической механике. Туннельный эффект является экспериментальным подтверждением одного из фундаментальных исходных положений квантовой механики - корпускулярно-волнового дуализма свойств элементарных частиц.

Туннельным эффектом называется возможность элементарной частице, например электрону, пройти (протуннелировать) через потенциальный барьер, когда барьер выше полной энергии частицы. Возможность существования туннельного эффекта в микромире была понята физиками в период создания квантовой механики, в 20-30-х годах нашего века. В дальнейшем за счет туннельного эффекта были объяснены некоторые весьма важные явления, обнаруженные экспериментально в различных областях физики.

Вопрос 12

А́том (от др.-греч. ἄτομος - неделимый) - частица вещества микроскопических размеров и массы, наименьшая частьхимического элемента , являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов . Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом . В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро, несущее почти всю (более чем 99,9%) массу атома, состоит из положительно заряженныхпротонов и незаряженныхнейтронов , связанных между собой при помощи сильного взаимодействия . Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в в периодической системе и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N - определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze ) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

ВОДОРОДОПОДОБНЫЕ АТОМЫ - атомы (ионы), состоящие, подобно атому водорода, из ядра и одного электрона. К ним относятся ионы элементов с ат. номером 2, потерявшие все электроны, кроме одного: He + , Li +2 , В+ 3 ,. . . Вместе с водородом они образуют простейший изоэлектронный ряд .Уровни энергии (и спектры) В. а. подобны водородным, отличаясь от них масштабом энергий (и частот) переходов в Z 2 раз (см. Атом ).

Системы, подобные В. а., образуют атомное ядро и мезон (мезоатом ),а также электрон и позитрон (позитроний ; )для этих систем также получаются аналогичные водородным уровни энергии и спектры.

Энергетический уровень - собственные значения энергииквантовых систем , то есть систем, состоящих из микрочастиц (электронов , протонов и других элементарных частиц ) и подчиняющихся законам квантовой механики . Каждый уровень характеризуется определённым состоянием системы , или подмножеством таковых в случаевырождения . Понятие применимо к атомам (электронные уровни), молекулам (различные уровни, соответствующие колебаниям и вращениям), атомным ядрам (внутриядерные энергетические уровни) и т.д.

Ионизации и возбуждения.

На освобождение электрона от связи с атомным ядром, вследствие чего и происходит образование положительного иона, необходимо затратить определенное количество энергии. Энергия, израсходованная на отрыв электрона, называется работой ионизации. Работа ионизации, выраженная в электронвольтах, называетсяпотенциалом ионизации (электронвольт-единица энергии, которую приобретает электрон, ускоренный электрическим полем с разностью потенциалов в 1 В). Если сообщить связанному электрону газовой молекулы или атома некоторое количество дополнительной энергии, то электрон перейдет на новую орбиту с более высоким энергетическим уровнем, а молекула или атом будут находиться в возбужденном состоянии. Количество энергии, выраженное в электронвольтах, которое необходимо затратить для возбуждения атома или молекулы газа, называется потенциалом возбуждения. Возбужденное состояние атома или молекулы газа является неустойчивым, и электрон может снова возвратиться на стационарную орбиту, а атом или молекула перейдет в нормальное невозбужденное состояние. Энергия возбуждения при этом передается в окружающее пространство в форме светового электромагнитного излучения.

Величина потенциала ионизации и возбуждения зависит от природы атома. Наименьший потенциал ионизации

(3,9 эВ) имеют пары цезия, а наибольший (24,5 эВ) наблюдается у газа гелия. У щелочноземельных металлов (цезия, калия, натрия, бария, кальция) связь между электронами и ядром невелика, поэтому они имеют наименьшие потенциалы ионизации, следовательно, на возбуждение и работу выхода электрона потребуется затратить меньше энергии, чем у железа, марганца, меди и никеля. Элементы, имеющие меньшие потенциалы ионизации и возбуждения, чем свариваемый металл, вводят в состав электродных покрытий, чтобы повысить стабилизацию дугового разряда в газах. Количество энергии, которое необходимо для выделения электрона из металла или жидкого тела, называется работой выхода электрона и выражается в электронвольтах.

Пространственное распределение электрона в атоме водорода. @

Графически вероятность нахождения электрона можно изобразить в виде облака, где более темные области соответствуют большей вероятности нахождения. «Размеры» и «форму» электронного облака в заданном состоянии атома можно вычислить. Для основного состояния атома водорода решение уравнения Шредингера дает
, (2.6)
где φ (r) – волновая функция, зависящая только от расстояния r до центра атома, r 1 – постоянная, совпадающая с радиусом первой Боровской орбиты. Следовательно, электронное облако в основном состоянии водорода сферически-симметрично, как показано на рисунке 11. Электронное облако только приблизительно характеризует размеры атома и движение электрона, так как согласно (2.15) вероятность обнаружения электрона не равна нулю для любой точки пространства. На рисунке 12 изображены электронные облака атома водорода в состояниях: n=2, l=1 и m=1, 0, -1 при наличии магнитного поля.


Рис. 11. Электронное облако атома водорода в основном состоянии n =1, l= 0.

Рис. 12. Электронные облака атома водорода и прецессия моментов импульса в состояниях n = 2, l = 1 для m = 1, 0, -1

Если в этих состояниях определить наиболее вероятные расстояния электрона от ядра, то они будут равны радиусам соответствующих Боровских орбит. Таким образом, хотя квантовая механика не использует представление о движении электрона по определенным траекториям, тем не менее, радиусам Боровских орбит и в этой теории можно придать определенный физический смысл.

ШИРИНА УРОВНЯ - неопределённость энергии кванто-вомеханич. системы (атома, молекулы и др.), обладающей дискретными уровнями энергии в состоянии, к-рое не является строго стационарным. Ш. у. D , характеризующая размытие уровня энергии, его уширение, зависит от ср. длительности пребывания системы в данном состоянии- времени жизни на уровне t k и, согласно неопределённостей соотношению для энергии и времени, Для строго стационарного состояния системы t k = и D =0. Время жизни t k , а следовательно, и Ш.у. обусловлены возможностью квантовых переходов системы в состояния с др. энергиями. Для свободной системы (напр., для изолир. атома) спонтанные излучат. переходы с уровня на нижележащие уровни определяют радиационную, или естественную, Ш.у.:

, где -полная вероятность спон танного испускания с уровня , A ki - Эйнштейна коэффициентыдля спонтанного испускания. Уширение уровня может быть вызвано также спонтанными безызлучат. переходами, напр. для радиоакт. атомного ядра - альфа-распадом .Ширина атомного уровня очень мала по сравнению с энергией уровня. В др. случаях (напр., для возбуждённых ядер, вероятность квантовых переходов к-рых обусловлена испусканием нейтронов и очень велика) Ш.у. может стать сравнимой с расстоянием между уровнями. Любые взаимодействия, увеличивающие вероятность перехода системы в др. состояния, приводят к дополнит. уширению уровней. Примером может служить уширение уровней атома (иона) в плазме в результате его столкновения с ионами и электронами (см. Излучение плазмы ) . В общем случае полная Ш.у. пропорц. сумме вероятностей всех возможных переходов с этого уровня - спонтанных и вызванных разл. взаимодействиями.

Особенности структуры электронных уровней в сложных атомах. Связь распределения электронов по орбиталям с периодической таблицей Менделеева.@

Условно все возможные квантовые состояния распределяют (группируют) по слоям (оболочкам), подслоям (подоболочкам) и орбиталям. Как оказалось, свойства атомов определяются распределением электронов по этим состояниям.

Квантовым слоем (квантовой оболочкой) называют совокупность состояний, которым соответствует одно и тем же значение квантового числа n, но разные значения l,m, s. Наибольшее число электронов N, которые могут находиться в оболочке, согласно (2.8), равно удвоенному квадрату номера слоя: N=2n 2 . Так как энергия состояний в многоэлектронном атоме зависит от двух квантовых чисел n и l, то электроны в квантовом слое могут занимать l энергетических уровней. Квантовые слои обозначаются цифрами, соответствующими номерам слоев, кроме того они имеют названия: слой n = 1 называют К слоем (или К оболочкой), слой n = 2 называют L слоем (или L оболочкой), слой n= 3 – М слоем, n = 4 – N, n = 5 – О слоем, n = 6 – Р и так далее.

Каждый квантовый слой с номером n условно состоит из n квантовых подслоев (подоболочек), соответствующих состояниям с одними и теми же n, l, но разными m, s.В подслое может находиться до 2(2l+1) электронов, подслои обозначаются буквами: l = 0 – s, l= 1 – p, l= 2 – d, l= 3 – f, l= 4 – g и т.д. Энергия электронов одного подслоя примерно одинакова.

В свою очередь, каждый подслой состоит из 2l+1орбиталей, соответствующих состояниям с одними и теми же n, l, m, но разными s . 1/2.±На каждой орбитали может находиться не более двух электронов с разными спиновыми числами s =

Отсюда следует, что в s-подслое может содержаться максимум 2 электрона, в р-подслое – 6, в d – 10, в f – 14, в g – 18 электронов. Соответственно в слое K может содержаться максимум 2 электрона, в слое L – 8, в слое M –18, в слое N – 32 и т.д.

1s®Структуры и максимально возможные заполнения слоев изображают в виде формул: K-слой 2 2s®, L слой 2 2p 6 3s®, M-слой 2 3p 6 3d 10 4s®, N-слой 2 4p 6 4d 10 4f 14 . Используя введенные понятия, можно условно формулой и графически изобразить распределение электронов, например атома кислорода О 8 , следующим образом: символьно- 1s 2 2s 2 2p 4 , графически- (Рис.14).

Рис.14. Условное графическое изображение орбиталей кислорода.
При заселении орбиталей электроны в первую очередь располагаются поодиночке на каждой орбитали, а затем начинается их заполнение вторыми электронами. Эта особенность называется правилом Гунда, она связана с тем, что энергия подслоя при таком заполнении несколько меньше. На рис.14 показано применение этого правила для кислорода.

Принцип Паули - фундаментальный закон природы,согласно которому в квантовой системе две (или более) тождественныечастицы с полуцелым спином не могут одновременно находиться в одном и томже состоянии. Сформулирован В. Паули (1925).
Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

1. Главное квантовое число n (n = 1, 2 ...).

2. Орбитальное (азимутальное) квантовое число l (l = 0, 1, 2, ... n-1).

3. Магнитное квантовое число m (m = 0, +/-1, +/-2, +/-... +/-l).

4. Спиновое квантовое число ms (ms = +/-1/2).

Для одного фиксированного значения главного квантового числа n существует 2n2 различных квантовых состояний электрона.

Один из законов квантовой механики, называемый принципом Паули, утверждает:

В одном и том же атоме не может быть двух электронов, обладающих одинаковым набором квантовых чисел, (т.е. не может быть двух электронов в одинаковом состоянии).

Принцип Паули дает объяснение периодической повторяемости свойств атома, т.е. периодической системе элементов Менделеева.

Первый постулат Бора (постулат стационарных состояний) гласит: атомная система может находится только в особых стационарных или квантовыхсостояниях, каждому из которых соответствует определенная энергия E n . В стационарных состояниях атом не излучает.

Этот постулат находится в явном противоречии с классической механикой, согласно которой энергия движущегося электрона может быть любой. Он находится в противоречии и с электродинамикой, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн. Согласно первому постулату Бора, атом характеризуется системой энергетических уровней , каждый из которых соответствует определенному стационарному состоянию (рис. 6.2.2). Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного ядра, отрицательна. Поэтому всем стационарным состояниям соответствуют значения энергии E n < 0. При E n ≥ 0 электрон удаляется от ядра, т. е. происходит ионизация. Величина |E 1 | называется энергией ионизации . Состояние с энергией E 1 называется основным состоянием атома.

Второй постулат Бора (правило частот) формулируется следующим образом: при переходе атома из одного стационарного состояния с энергией E n в другое стационарное состояние с энергией E m излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний:

Второй постулат Бора также противоречит электродинамике Максвелла , так как частота излучения определяется только изменением энергии атома и никак не зависит от характера движения электрона.

Теория Бора при описании поведения атомных систем не отвергла полностью законы классической физики. В ней сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель атома Резерфорда в теории Бора была дополнена идеей о квантовании электронных орбит. Поэтому теорию Бора иногда называют полуклассической .

ЛИНЕЙЧАТЫЕ СПЕКТРЫ - оптические спектры испускания и поглощения, состоящие из отдельных спектральных линий. Л. с. являются атомные спектры, спектры звёздных атмосфер (см. Фраунгофероеы линии), спектры органич. молекул при низких темп pax в спец. условиях (см.…

АТОМНЫЕ СПЕКТРЫ - оптические спектры свободных или слабо связанных атомов (одноатомных газов, паров). Обусловлены квантовыми переходами атома. Атомные спектры - линейчатые, состоят из отдельных спектральных линий, которые характеризуются определенной длиной волны и для простых атомов группируются в спектральные серии . Содержат информацию о строении атомов, используются также в спектральном анализе.

Вопрос 13.

ЯДРО АТОМНОЕ - центральная массивная часть атома, состоящая из протонов и нейтронов (нуклонов). В Я. а. сосредоточена почти вся масса атома (более 99,95%). Размеры ядер порядка 10 -13 -10 -12 см. Ядра имеют положит. электрич.заряд , кратный абс. величине заряда электрона е: Q = Ze . Целое число Z совпадает с порядковым номером элемента впериодической системе элементов . Я. а. было открыто Э. Резерфордом (Е. Rutherford) в 1911 в опытах по рассеянию a-частиц при прохождении их через вещество.

СТРОЕНИЕ

Ядро представляет собой центральную часть атома. В нем сосредоточены положительный электрический заряд и основная часть массы атома; по сравнению с радиусом электронных орбит размеры ядра чрезвычайно малы: 10-15 - 10-14 м. Ядра всех атомов состоят из протонов и нейтронов, имеющих почти одинаковую массу, но лишь протон несет электрический заряд. Полное число протонов называется атомным номером Z атома, который совпадает с числом электронов в нейтральном атоме. Ядерные частицы (протоны и нейтроны), называемые нуклонами, удерживаются вместе очень большими силами; по своей природе эти силы не могут быть ни электрическими, ни гравитационными, а по величине они на много порядков превышают силы, связывающие электроны с ядром. Первое представление об истинных размерах ядра давали опыты Резерфорда по рассеянию альфа-частиц в тонких металлических фольгах. Частицы глубоко проникали сквозь электронные оболочки и отклонялись, приближаясь к заряженному ядру. Эти опыты явно свидетельствовали о малых размерах центрального ядра и указали на способ определения ядерного заряда. Резерфорд установил, что альфа-частицы приближаются к центру положительного заряда на расстояние примерно 10-14 м, а это позволило ему сделать вывод, что таков максимально возможный радиус ядра. На основе таких предположений Бор построил свою квантовую теорию атома, успешно объяснившую дискретные спектральные линии, фотоэффект, рентгеновское излучение и периодическую систему элементов. Однако в теории Бора ядро рассматривалось как положительный точечный заряд. Ядра большинства атомов оказались не только очень малы - на них никак не действовали такие средства возбуждения оптических явлений, как дуговой искровой разряд, пламя и т.п. Указанием на наличие некой внутренней структуры ядра явилось открытие в 1896 А. Беккерелем радиоактивности. Оказалось, что уран, а затем и радий, полоний, радон и т.п. испускают не только коротковолновое электромагнитное излучение, рентгеновское излучение и электроны (бета-лучи), но и более тяжелые частицы (альфа-лучи), а они могли исходить лишь из массивной части атома. Резерфорд использовал альфа-частицы радия в своих опытах по рассеянию, которые послужили основой формирования представлений о ядерном атоме. (В то время было известно, что альфа-частицы - это атомы гелия, лишенные своих электронов; но на вопрос - почему некоторые тяжелые атомы спонтанно испускают их, ответа еще не было, как не было и точного представления о размерах ядра.)

Модели ядра

Нач. период развития ядерной физики связан с формированием и развитием капельной и оболочечной моделей ядра. Эти Я. м. возникли почти одновременно в 30-х гг. 20 в. Они основаны на разл. представлениях и призваны описывать противоположные свойства ядер. В капельной модели ядро рассматривается как непрерывная среда, состоящая из нейтронной и протонной жидкостей и описываемая ур-ниями классич. гидродинамики (отсюда др. назв.- г и д р о д и н а м и ч. м о д е л ь). Плотн. ядерной жидкости почти постоянна внутри объёма капли и резко падает в поверхностном слое, толщина к-рого значительно меньше радиуса капли. Осн. параметры: равновесная плотность безграничной ядерной жидкости r 0 (0,16 частиц/Фм 3), энергия связи на 1 нуклон m 0 (16 МэВ) и коэф. поверхностного натяжения s (1 МэВ/Фм 2); иногда вводят s 1 и s 2 для нейтронов и протонов в отдельности. Для учёта зависимости энергии связи ядра от величины нейтронного избытка (N-Z; N и Z- соответственно числа нейтронов и протонов в ядре) вводится изовекторный коэф. сжимаемости ядерной материи b (30 МэВ); для учёта конечной сжимаемости ядерного вещества – изоскалн коэф. сжимаемости (м о д у л ь с ж а т и я) K (200 МэВ).

Капельная модель ядра описывает осн. макроскопич. свойства ядер: свойство насыщения, т. е. пропорциональность энергии связи тяжёлых ядер массовому числу A = N+Z; зависимость радиуса ядра R от A: R = r 0 A 1/3 , где r 0 - практически постоянный коэф. (1,06 Фм) за исключением самых лёгких ядер. Она приводит к Вайцзек-кера формуле, к-рая в среднем хорошо описывает энергии связи ядер. Капельная модель хорошо описывает деление ядер. В сочетании с т. н. оболочечной поправкой (см. ниже) она до сих пор служит осн. инструментом исследования этого процесса.

Оболочечная модель ядра основана на представлении о ядре как о системе нуклонов, независимо движущихся в ср. поле ядра, создаваемом силовым воздействием остальных нуклонов. Эта Я. м. возникла по аналогии с атомной моделью оболочек и первоначально была призвана объяснить обнаруженные экспериментально отклонения от ф-лы Вайцзеккера и существованиемагических ядер, для к-рых N и Z соответствуют наиб. выраженным максимумам энергии связи. В отличие от капельной модели, к-рая практически сразу возникла в законченном виде, оболочечная модель претерпела длит. период поиска оп-тим. формы потенциала ср. поля U(r), обеспечивающего правильные значения магич. чисел. Решающий шаг был сделан в кон. 40-х гг. М. Гёпперт-Майер (М. Goeppert-Mayer) и X. Йенсеном (Н. Jensen), выяснившими важную роль спин-орбитального слагаемого (U SL)ср. поля. Для центр. части ядра в совр. теории обычно используют потенциал Саксона-Вудса.

ЯДЕРНЫЕ РЕАКЦИИ

ЯДЕРНЫЕ РЕАКЦИИ, превращения атомных ядер при взаимодействии с элементарными частицами, g-квантами или друг с другом. Ядерные реакции используются в экспериментальной ядерной физике (исследование свойств элементарных частиц, получение трансурановых элементов и др.), извлечении и применении ядерной энергии и др. Ядерные реакции - основной процесс производства энергии светящихся звезд.

ПОРОГРЕАКЦИИ

Механизмы ядерных реакций.

По механизму взаимодействия ядерные реакции делятся на два основных вида:

Реакции с образованием составного ядра, это двустадийный процесс, протекающий при не очень

большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

Прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица

пересекла ядро. Главным образом такой механизм проявляется при очень больших энергиях бомбардирующих частиц

Гипотеза де Бройля. Дифракция микрочастиц. Принцип неопределённости Гейзенберга. Задание состояния микрочастицы. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Принцип суперпозиции квантовых состояний. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.

Гипотеза де Бройля

В 1924 году французский физик Луи де Бройль высказал гипотезу о том, что все материальные объекты в природе обладают как корпускулярными, так и волновыми свойствами. По гипотезе де Бройля корпускулярно-волновой дуализм является всеобщим свойством материи, и поэтому любая частица (электрон, протон, нейтрон и др.) обладает волновыми свойствами. При этом наличие у частицы волновых свойств принципиально изменяет характер её движения и способ описания такого движения.

По гипотезе де Бройля волновые свойства свободной частицы, движущейся по инерции в отсутствие внешних силовых полей, описывает плоская волна де Бройля , частота и длина волны которой связаны с корпускулярными характеристиками частицы – энергией и импульсом . Эта связь имеет вид:

.

Направление распространения волны де Бройля совпадает с направлением движения частицы, и можно показать, что групповая скорость волны и скорость частицы одинаковы.

В теории волновых процессов уравнение плоской монохроматической волны, распространяющейся в направлении оси , имеет вид:

Его часто записывают в комплексной форме:

учитывая, что гармоническая функция является действительной частью комплексной функции , где - мнимая единица.

Уравнение плоской волны определяет амплитуду волны , её круговую частоту и волновое число . Начальная фаза волны в выражениях для выбрана равной нулю. Так как для плоской волны де Бройля , то уравнение плоской волны де Бройля можно записать в виде:

.

Плоская волна де Бройля описывает волновые свойства свободной частицы, имеющей энергию и импульс . Сравнивая квадраты амплитуд волн де Бройля в различных областях пространства, можно оценить вероятности нахождения частицы в этих областях. Вероятность обнаружения частицы в данной области пространства тем больше, чем больше квадрат амплитуды волны де Бройля, т.е. её интенсивность.

Волны де Бройля, которые часто называют волнами материи, как и волны любой природы, могут отражаться, преломляться, интерферировать друг с другом, испытывать дифракцию при взаимодействии с неоднородностями. Тогда можно говорить, например, о дифракции частиц и наблюдать дифракционные эффекты в различных экспериментах с неоднородными средами. Один из первых опытов по дифракции электронов на кристалле был выполнен в 1927 году американскими учёными Клинтоном Дэвиссоном и Лестером Джермером.

Опыт Дэвиссона-Джермера .

В опыте Дэвиссона-Джермера ускоренные в электронной пушке электроны попадали на кристалл никеля под некоторым углом скольжения . Регулировкой величины ускоряющей разности потенциалов в электронной пушке изменялись кинетическая энергия и импульс вылетающих электронов и, следовательно, их длина волны де Бройля. По току детектора в опыте измерялось число отражённых от кристалла электронов. Структура кристалла никеля была хорошо известна из данных рентгеноструктурного анализа

Было обнаружено резкое увеличение числа отражённых от кристалла электронов в тех случаях, когда для электронных волн де Бройля выполнялось условие Вульфа-Брэггов, (это условие было получено в опытах по дифракции рентгеновских лучей на кристалле никеля).