Геомагнитный индекс ap. Что такое геомагнитные индексы А, К и Кр? Ионосферные суббури как фактор космической погоды

Маломощные источники электрической энергии

Для питания переносной электро- и радиоаппаратуры применяют гальванические элементы и аккумуляторы.

Гальванические элементы - это источники одноразового действия, аккумуляторы - источники многоразового действия.

Простейший гальванические элемент

Простейший элемент может быть изготовлен из двух полосок: медной и цинковой, погруженных в воду, слегка подкисленную серной кислотой. Если цинк достаточно чист, чтобы быть свободным от местных реакций, никаких заметных изменений не произойдет до тех пор, пока медь и цинк не будут соединены проводом.

Однако полоски имеют разные потенциалы одна по отношению к другой, и когда они будут соединены проводом, в нем появится . По мере этого действия цинковая полоска будет постепенно растворяться, а близ медного электрода будут образовываться пузырьки газа, собирающиеся на его поверхности. Этот газ - водород, образующийся из электролита. Электрический ток идет от медной полоски по проводу к цинковой полоске, а от нее через электролит обратно к меди.

Постепенно серная кислота электролита замещается сульфатом цинка, образующимся из растворенной части цинкового электрода. Благодаря этому напряжение элемента уменьшается. Однако еще более сильное падение напряжения вызывается образованием газовых пузырьков на меди. Оба эти действия производят «поляризацию». Подобные элементы не имеют почти никакого практического значения.

Важные параметры гальванических элементов

Величина напряжения, даваемого гальваническими элементами, зависит только от их типа и устройства, т. е. от материала электродов и химического состава электролита, но не зависит от формы и размеров элементов.

Сила тока, которую может давать гальванический элемент, ограничивается его внутренним сопротивлением.

Очень важной характеристикой гальванического элемента является . Под электрической емкостью подразумевается то количество электричества, которое гальванический или аккумуляторный элемент способен отдать в течение всего времени своей работы, т. е. до наступления окончательного разряда.

Отданная элементом емкость определяется умножением силы разрядного тока, выраженной в амперах, на время в часах, в течение которого разряжался элемент вплоть до наступления полного разряда. Поэтому электрическая емкость выражается всегда в ампер-часах (А х ч).

По величине емкости элемента можно также заранее определить, сколько примерно часов он будет работать до наступления полного разряда. Для этого нужно емкость разделить на допустимую для этого элемента силу разрядного тока.

Однако электрическая емкость не является величиной строго постоянной. Она изменяется в довольно больших пределах в зависимости от условий (режима) работы элемента и конечною разрядного напряжения.

Если элемент разряжать предельной силой тока и притом без перерывов, то он отдаст значительно меньшую емкость. Наоборот, при разряде того же элемента током меньшей силы и с частыми и сравнительно продолжительными перерывами элемент отдаст полную емкость.

Что же касается влияния на емкость элемента конечного разрядного напряжения, то нужно иметь в виду, что в процессе разряда гальванического элемента его рабочее напряжение не остается на одном уровне, а постепенно понижается.

Распространенные виды гальванических элементов

Наиболее распространены гальванические элементы марганцево-цинковой, марганцево-воздушной, воздушно-цинковой и ртутно-цинковой систем с солевым и щелочным электролитами. Сухие марганцево-цинковые элементы с солевым электролитом имеют начальное напряжение от 1,4 до 1,55 В, продолжительность работы при температуре окружающей среды от -20 до -60 о С от 7 ч до 340 ч.

Сухие марганцево-цинковые и воздушно-цинковые элементы со щелочным электролитом имеют напряжение от 0,75 до 0,9 В и продолжительность работы от 6 ч до 45 ч.

Сухие ртутно-цинковые элементы имеют начальное напряжение от 1,22 до 1,25 В и продолжительность работы от 24 ч до 55 ч.

Наибольший гарантийный срок хранения, достигающий 30 месяцев, имеют сухие ртутно-цинковые элементы.

Это вторичные гальванические элементы. В отличие от гальванических элементов в аккумуляторе же сразу после сборки никакие химические процессы не возникают.

Чтобы в аккумуляторе начались химические реакции, связанные с движением электрических зарядов, нужно соответствующим образом изменить химический состав его электродов (а частью и электролита). Это изменение химического состава электродов происходит под действием пропускаемого через аккумулятор электрического тока.

Поэтому, чтобы аккумулятор мог давать электрический ток, его предварительно нужно «зарядить» постоянным электрическим током от какого-нибудь постороннего источника тока.

От обычных гальванических элементов аккумуляторы выгодно отличаются также тем, что после разряда они опять могут быть заряжены. При хорошем уходе за ними и при нормальных условиях эксплуатации аккумуляторы выдерживают до нескольких тысяч зарядов и разрядок.
Устройство аккумулятора

В настоящее время наиболее часто на практике применяют свинцовые и кадмиево-никелевые аккумуляторы. У первых электролитом служит раствор серной кислоты, а у вторых - раствор щелочей в воде. Свинцовые аккумуляторы называют также кислотными, а кадмиево-никелевые - щелочными.

Принцип работы аккумуляторов основан на поляризации электродов . Простейший кислотный аккумулятор устроен следующим образом: это две свинцовые пластины, опущенные в электролит. В результате химической реакции замещения пластины покрываются слабым налетом сернокислого свинца PbSO4, как это следует из формулы Pb + H 2 SO 4 = PbSO 4 + Н 2 .

Устройство кислотного аккумулятора

Такое состояние пластин соответствует разряженному аккумулятору. Если теперь аккумулятор включить на заряд, т. е. подсоединить его к генератору постоянного тока, то в нем вследствие электролиза начнется поляризация пластин. В результате заряда аккумулятора его пластины поляризуются, т. е. изменяют вещество своей поверхности, и из однородных (PbSO 4) превращаются в разнородные (Pb и Рb О 2 ).

Аккумулятор становится источником тока, причем положительным электродом у него служит пластина, покрытая двуокисью свинца, а отрицательным - чистая свинцовая пластина.

К концу заряда концентрация электролита повышается вследствие появления в нем дополнительных молекул серной кислоты.

В этом одна из особенностей свинцового аккумулятора: его электролит не остается нейтральным и сам участвует в химических реакциях при работе аккумулятора.

К концу разряда обе пластины аккумулятора опять покрываются сернокислым свинцом, в результате чего аккумулятор перестает быть источником тока. До такого состояния аккумулятор никогда не доводят. Вследствие образования сернокислого свинца на пластинах, концентрация электролита в конце разряда понижается. Если аккумулятор поставить на заряд, то вновь можно вызвать поляризацию, чтобы опять поставить его на разряд и т. д.

Как зарядить аккумулятор

Существует несколько способов заряда аккумуляторов. Наиболее простой - нормальный заряд аккумулятора, который происходит следующим образом. Вначале на протяжении 5 - 6 ч заряд ведут двойным нормальным током, пока напряжение на каждой аккумуляторной банке не достигнет 2,4 В.

Нормальный зарядный ток определяют по формуле I зар = Q/16

Где Q - номинальная емкость аккумулятора, Ач.

После этого зарядный ток уменьшают до нормального значения и продолжают заряд и течение 15 - 18 ч, до появления признаков конца заряда.

Современные аккумуляторы

Кадмиево-никелевые, или щелочные аккумуляторы, появились значительно позже свинцовых и по сравнению с ними представляют собой более совершенные химические источники тока. Главное преимущество щелочных аккумуляторов перед свинцовыми заключается в химической нейтральности их электролита по отношению к активным массам пластин. Благодаря этому саморазряд у щелочных аккумуляторов получается значительно меньше, чем у свинцовых. Принцип действия щелочных аккумуляторов также основан на поляризации электродов при электролизе.

Для питания радиоаппаратуры выпускают герметичные кадмиево-никелевые аккумуляторы, которые работоспособны при температурах от -30 до +50 о С и выдерживают 400 - 600 циклов заряд-разряд. Эти аккумуляторы выполняют в форме компактных параллелепипедов и дисков с массой от нескольких граммов до килограммов.

Выпускают никель-водородные аккумуляторы для энергоснабжения автономных объектов. Удельная энергия никель-водородного аккумулятора составляет 50 - 60 Вт ч кг -1 .

Маломощные источники электрической энергии

Для питания переносной электро- и радиоаппаратуры применяют гальванические элементы и аккумуляторы.

Гальванические элементы - это источники одноразового действия, аккумуляторы - источники многоразового действия.

Простейший гальванические элемент

Простейший элемент может быть изготовлен из двух полосок: медной и цинковой, погруженных в воду, слегка подкисленную серной кислотой. Если цинк достаточно чист, чтобы быть свободным от местных реакций, никаких заметных изменений не произойдет до тех пор, пока медь и цинк не будут соединены проводом.

Однако полоски имеют разные потенциалы одна по отношению к другой, и когда они будут соединены проводом, в нем появится . По мере этого действия цинковая полоска будет постепенно растворяться, а близ медного электрода будут образовываться пузырьки газа, собирающиеся на его поверхности. Этот газ - водород, образующийся из электролита. Электрический ток идет от медной полоски по проводу к цинковой полоске, а от нее через электролит обратно к меди.

Постепенно серная кислота электролита замещается сульфатом цинка, образующимся из растворенной части цинкового электрода. Благодаря этому напряжение элемента уменьшается. Однако еще более сильное падение напряжения вызывается образованием газовых пузырьков на меди. Оба эти действия производят «поляризацию». Подобные элементы не имеют почти никакого практического значения.

Важные параметры гальванических элементов

Величина напряжения, даваемого гальваническими элементами, зависит только от их типа и устройства, т. е. от материала электродов и химического состава электролита, но не зависит от формы и размеров элементов.

Сила тока, которую может давать гальванический элемент, ограничивается его внутренним сопротивлением.

Очень важной характеристикой гальванического элемента является . Под электрической емкостью подразумевается то количество электричества, которое гальванический или аккумуляторный элемент способен отдать в течение всего времени своей работы, т. е. до наступления окончательного разряда.

Отданная элементом емкость определяется умножением силы разрядного тока, выраженной в амперах, на время в часах, в течение которого разряжался элемент вплоть до наступления полного разряда. Поэтому электрическая емкость выражается всегда в ампер-часах (А х ч).

По величине емкости элемента можно также заранее определить, сколько примерно часов он будет работать до наступления полного разряда. Для этого нужно емкость разделить на допустимую для этого элемента силу разрядного тока.

Однако электрическая емкость не является величиной строго постоянной. Она изменяется в довольно больших пределах в зависимости от условий (режима) работы элемента и конечною разрядного напряжения.

Если элемент разряжать предельной силой тока и притом без перерывов, то он отдаст значительно меньшую емкость. Наоборот, при разряде того же элемента током меньшей силы и с частыми и сравнительно продолжительными перерывами элемент отдаст полную емкость.

Что же касается влияния на емкость элемента конечного разрядного напряжения, то нужно иметь в виду, что в процессе разряда гальванического элемента его рабочее напряжение не остается на одном уровне, а постепенно понижается.

Распространенные виды гальванических элементов

Наиболее распространены гальванические элементы марганцево-цинковой, марганцево-воздушной, воздушно-цинковой и ртутно-цинковой систем с солевым и щелочным электролитами. Сухие марганцево-цинковые элементы с солевым электролитом имеют начальное напряжение от 1,4 до 1,55 В, продолжительность работы при температуре окружающей среды от -20 до -60 о С от 7 ч до 340 ч.

Сухие марганцево-цинковые и воздушно-цинковые элементы со щелочным электролитом имеют напряжение от 0,75 до 0,9 В и продолжительность работы от 6 ч до 45 ч.

Сухие ртутно-цинковые элементы имеют начальное напряжение от 1,22 до 1,25 В и продолжительность работы от 24 ч до 55 ч.

Наибольший гарантийный срок хранения, достигающий 30 месяцев, имеют сухие ртутно-цинковые элементы.

Это вторичные гальванические элементы. В отличие от гальванических элементов в аккумуляторе же сразу после сборки никакие химические процессы не возникают.

Чтобы в аккумуляторе начались химические реакции, связанные с движением электрических зарядов, нужно соответствующим образом изменить химический состав его электродов (а частью и электролита). Это изменение химического состава электродов происходит под действием пропускаемого через аккумулятор электрического тока.

Поэтому, чтобы аккумулятор мог давать электрический ток, его предварительно нужно «зарядить» постоянным электрическим током от какого-нибудь постороннего источника тока.

От обычных гальванических элементов аккумуляторы выгодно отличаются также тем, что после разряда они опять могут быть заряжены. При хорошем уходе за ними и при нормальных условиях эксплуатации аккумуляторы выдерживают до нескольких тысяч зарядов и разрядок.
Устройство аккумулятора

В настоящее время наиболее часто на практике применяют свинцовые и кадмиево-никелевые аккумуляторы. У первых электролитом служит раствор серной кислоты, а у вторых - раствор щелочей в воде. Свинцовые аккумуляторы называют также кислотными, а кадмиево-никелевые - щелочными.

Принцип работы аккумуляторов основан на поляризации электродов . Простейший кислотный аккумулятор устроен следующим образом: это две свинцовые пластины, опущенные в электролит. В результате химической реакции замещения пластины покрываются слабым налетом сернокислого свинца PbSO4, как это следует из формулы Pb + H 2 SO 4 = PbSO 4 + Н 2 .

Устройство кислотного аккумулятора

Такое состояние пластин соответствует разряженному аккумулятору. Если теперь аккумулятор включить на заряд, т. е. подсоединить его к генератору постоянного тока, то в нем вследствие электролиза начнется поляризация пластин. В результате заряда аккумулятора его пластины поляризуются, т. е. изменяют вещество своей поверхности, и из однородных (PbSO 4) превращаются в разнородные (Pb и Рb О 2 ).

Аккумулятор становится источником тока, причем положительным электродом у него служит пластина, покрытая двуокисью свинца, а отрицательным - чистая свинцовая пластина.

К концу заряда концентрация электролита повышается вследствие появления в нем дополнительных молекул серной кислоты.

В этом одна из особенностей свинцового аккумулятора: его электролит не остается нейтральным и сам участвует в химических реакциях при работе аккумулятора.

К концу разряда обе пластины аккумулятора опять покрываются сернокислым свинцом, в результате чего аккумулятор перестает быть источником тока. До такого состояния аккумулятор никогда не доводят. Вследствие образования сернокислого свинца на пластинах, концентрация электролита в конце разряда понижается. Если аккумулятор поставить на заряд, то вновь можно вызвать поляризацию, чтобы опять поставить его на разряд и т. д.

Как зарядить аккумулятор

Существует несколько способов заряда аккумуляторов. Наиболее простой - нормальный заряд аккумулятора, который происходит следующим образом. Вначале на протяжении 5 - 6 ч заряд ведут двойным нормальным током, пока напряжение на каждой аккумуляторной банке не достигнет 2,4 В.

Нормальный зарядный ток определяют по формуле I зар = Q/16

Где Q - номинальная емкость аккумулятора, Ач.

После этого зарядный ток уменьшают до нормального значения и продолжают заряд и течение 15 - 18 ч, до появления признаков конца заряда.

Современные аккумуляторы

Кадмиево-никелевые, или щелочные аккумуляторы, появились значительно позже свинцовых и по сравнению с ними представляют собой более совершенные химические источники тока. Главное преимущество щелочных аккумуляторов перед свинцовыми заключается в химической нейтральности их электролита по отношению к активным массам пластин. Благодаря этому саморазряд у щелочных аккумуляторов получается значительно меньше, чем у свинцовых. Принцип действия щелочных аккумуляторов также основан на поляризации электродов при электролизе.

Для питания радиоаппаратуры выпускают герметичные кадмиево-никелевые аккумуляторы, которые работоспособны при температурах от -30 до +50 о С и выдерживают 400 - 600 циклов заряд-разряд. Эти аккумуляторы выполняют в форме компактных параллелепипедов и дисков с массой от нескольких граммов до килограммов.

Выпускают никель-водородные аккумуляторы для энергоснабжения автономных объектов. Удельная энергия никель-водородного аккумулятора составляет 50 - 60 Вт ч кг -1 .

Гальванический элемент – это устройство, способное преобразовывать свободную энергию Гиббса окислительно-восстановительной реакции в электрическую.

Элемент состоит из двух электродов (например, цинк и медь), опущенных в растворы собственных солей (или другого электролита) и соединенных проводником.

Растворы солей также приведены в электрический контакт полупроницаемой мембраной или электролитическим ключом в виде стеклянной трубки, заполненной насыщенным раствором КСl.

При этом через проводник протекает электронный ток, а на электродах в растворе электролита протекают окислительно-восстановительные реакции. На внутреннем участке электрической цепи гальванического элемента (растворы солей и насыщенный раствор КСl) протекает ионный ток.

Например, для элемента Даниэля-Якоби:

– на аноде Zn 0 -2e=Zn 2+ – окисление;

– на катоде Cu 2+ +2e=Cu 0 – восстановление.

Zn 0 + Cu 2+ =Zn 2+ +Cu 0 .

Схема гальванического элемента: .

Электродвижущая сила (ЭДС) гальванического элемента (ε) выражается разностью установившихся электродных потенциалов катода и анода:

ε =Е К -Е А .

При стандартных условиях (при погружении металла в раствор собственного иона с одномоляльной концентрацией при температуре Т=25°С), электродный потенциал металла равен его стандартному электродному потенциалу (прил. 6).

В условиях, отличающихся от стандартных, электродный потенциал металла (Е) зависит от концентрации его ионов в растворе (при постоянной температуре), что выражается уравнением Нернста:

где Е 0 - стандартный электродный потенциал, В; n – число электронов, принимающих участие в процессе (заряд иона); С m – моляльная концентрация (активность) гидратированных ионов металла в растворе, моль/кг Н 2 О.

Пример 1 . Составьте схемы двух гальванических элементов, в одном из которых металл был бы катодом, а в другом – анодом. Напишите уравнения реакций, протекающих на электродах в гальванических элементах. Определите ЭДС элементов при температуре 298 К, если активность ионов обоих металлов в первом элементе равна 0,01 моль/кг Н 2 О, а в другом 1,0 моль/кг Н 2 О.

Решение. Металл – медь. Составим элемент, в котором медный электрод является катодом. Анодом можно выбрать любой металл, имеющий меньший электродный потенциал, например – магний.

Схема гальванического элемента: (-) Mg/ Mg 2+ //Cu 2+ /Cu (+).

Реакция на аноде: Mg (тв.) -2e=Mg 2+ (водн.)

Реакция на катоде: Cu 2+ (водн.) +2e=Cu (тв.)

Уравнение токообразующей реакции:

Mg (тв.) + Cu 2+ (водн.) =Mg 2+ (водн.) +Cu (тв.)

Значения потенциалов электродов рассчитаем по уравнению Нернста:

Составим элемент, в котором медный электрод является анодом. Катодом можно выбрать любой металл, имеющий больший электродный потенциал, например, ртуть:

(-)Cu / Cu 2+ //Hg 2+ / Hg (+).

Запишем уравнение реакций:

Cu (тв.) -2e=Cu 2+ (водн.) – на аноде;

Hg 2+ (водн.) +2e=Hg (ж.) – на катоде.

Суммарное уравнение:

Cu (тв.) + Hg 2+ (водн.) =Cu 2+ (водн.) + Hg (ж.) .

Так как активность ионов металла в растворах равна 1 моль/кг воды, то в данном элементе оба значения потенциалов – стандартные:

Ответ: ε=0,51 В.

Электролиз

Электролизом называется процесс раздельного окисления и восстановления на электродах, опущенных в раствор электролита, осуществляемый за счет протекания тока от внешнего источника ЭДС. При этом на аноде происходит окисление, а на катоде – восстановление и выделение металла. При электролизе расплавов электролитов на катоде всегда протекает восстановление катионов:

Ме n+ + ne= Ме 0

На аноде – окисление соответствующих анионов:

Аn m- - me - = Аn 0

Как правило, анодный процесс сопровождается вторичными химическими реакциями – рекомбинацией атомов в молекулы:

2Аn 0 =(Аn 0) 2

либо распадом нейтральной сложной частицы на два вещества, одно из которых является простым:

Например:

SО 4 2- - 2 е → → SО 2 + О 2

NO 3 - - е → → NO + О 2

Пример 1. Написать уравнения процессов, происходящих при электролизе расплава фторида алюминия AlF 3 (материал катода – алюминий, материал анода – графит).

Решение:

В расплаве AlF 3 диссоциирует согласно уравнению:

AlF 3 ↔Al 3+ +3F -

Под действием электрического поля катионы Al 3+ движутся к катоду и принимают от него электроны:

Al 3+ + 3е - → Al 0 – процесс восстановления.

Анионы F - движутся к аноду и отдают электроны:

F - - е - → F 0 – процесс окисления,

2 AlF 3 2 Al 0 + 3 F 2 0

В растворах электролитов электролиз осложняется возможностью участия молекул растворителя (например, воды) в электродных процессах. Если система, в которой проводят электролиз, содержит разные окислители, то на катоде будет восстанавливаться наиболее активный из них, т.е., окисленная форма той электрохимической системы, которой отвечает наибольшее значение электродного потенциала.

В зависимости от состава электролита на катоде могут протекать (в том числе и параллельно) следующие реакции:

1) восстановление катионов металла:

Ме n+ + ne= Ме 0

2) восстановление молекул воды:

2Н 2 О + 2 е →Н 2 + 2 ОН -

Первая реакция исключительно протекает в растворах солей только тех металлов, которые в ряду напряжения находятся после водорода, то есть имеют больший, по сравнению с водородом электродный потенциал.

Вторая – только в растворах наиболее активных металлов, находящихся в начале ряда напряжений вплоть до алюминия. Их электродный потенциал значительно отрицательнее потенциала водородного электрода в нейтральной водной среде (-0,41 В). Для растворов солей металлов, имеющих электродный потенциал, близкий к -0,41 В, и составляющих середину ряда напряжений, характерно протекание обеих катодных реакций.

В растворах кислот на катоде протекает водородная реакция:

2Н + + 2 е →Н 2

Следует отметить, что в качестве катода можно использовать любой токопроводящий материал, кроме наиболее активных щелочных и щелочноземельных металлов. Большинство других металлов, а также графит, устойчиво в любых электролитах при катодном заряжении.

Аналогично, при наличии в системе, подвергающейся электролизу, нескольких восстановителей, на аноде будет окисляться наиболее активный из них, т.е. восстановленная форма той электрохимической системы, которая характеризуется наименьшим значением электродного потенциала. На аноде может протекать несколько окислительных процессов:

1) растворение материала анода (кроме платины и графита):

Ме 0 - ne= Ме n+

2) окисление анионов соли или кислоты

Аn m- - me - = Аn 0

2Аn 0 =(Аn 0) 2

3) окисление молекул воды:

2Н 2 0 - 4 е - →О 2 + 4 Н +

На нерастворимых анодах (платина, графит и некоторые металлы, образующие на своей поверхности защитную токопроводящую оксидную пленку, например, Pb в растворе Н 2 SО 4 образует PbО 2) конкурируют реакции 2 и 3. Для бескислородных кислот и их солей предпочтительнее реакция 2, например:

2Cl - - 2 е → Cl 2

В растворах кислородных кислот и их солей, а также фторидов металлов протекает исключительно реакция окисления молекул воды.

В водных растворах щелочей на нерастворимых анодах протекает гидроксильная реакция:

4ОН - - 4е = 2Н 2 О + О 2

Пример 2. Написать уравнения процессов, происходящих при электролизе раствора хлорида меди (анод – черновая медная пластина).

Решение. Если анод изготовлен из металла, способного окисляться в условиях электролиза, как в данном случае, ионы из раствора на аноде не окисляются.Медь окисляется на аноде (черновая медная пластина) с переходом ионов меди в раствор: Cu 0 -2e=Cu 2+ ,а на катоде выделяется чистая медь из раствора: Cu 2+ + 2e= Cu 0 . Суммарного уравнения электролиза, как правило, в этом случае не пишут.

Пример 3. Написать уравнения процессов, происходящих при электролизе водного раствора сульфата натрия (анод платиновый).

Решение. Стандартный электродный потенциал системы

Na + + е - → Na 0 (-2,71 В)

значительно отрицательнее потенциала водородного электрода в нейтральной водной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода:

2Н 2 0 + 2 е →Н 2 + 2 ОН -

а ионы Na + , приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство)

На аноде будет происходить электрохимическое окисление воды, сопровождающееся выделением кислорода

2Н 2 0 - 4 е - →О 2 + 4 Н +

поскольку отвечающий этой системе стандартный электродный потенциал (1,23В) значительно ниже, чем стандартный электродный потенциал (2,01 В), характеризующий систему

2SО 4 2- → S 2 О 8 2- + 2 е -

Ионы SО 4 2- , движущиеся при электролизе к аноду, будут накапливаться в анодном пространстве.

Умножая уравнение катодного процесса на два и складывая с уравнением анодного процесса, получаем суммарное уравнение процесса:

6Н 2 0 → 2Н 2 + 4ОН - + О 2 + 4 Н +


Приняв во внимание, что одновременно происходит накопление ионов Na + в катодном пространстве и ионов SО 4 2- в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

6Н 2 0 + 2 Na 2 SО 4 → 2Н 2 + 4 Na + + 4ОН - + О 2 + 4 Н + + 2SО 4 2-

Предпосылки к появлению гальванических элементов. Немного истории. В 1786 году итальянский профессор медицины, физиолог Луиджи Алоизио Гальвани обнаружил интересное явление: мышцы задних лапок свежевскрытого трупика лягушки, подвешенного на медных крючках, сокращались, когда ученый прикасался к ним стальным скальпелем. Гальвани тут же сделал вывод, что это — проявление «животного электричества».

После смерти Гальвани, его современник Алессандро Вольта, будучи химиком и физиком, опишет и публично продемонстрирует более реальный механизм возникновения электрического тока при контакте разных металлов.

Вольта, после серии экспериментов, придет к однозначному выводу о том, что ток появляется в цепи из-за наличия в ней двух проводников из разных металлов, помещенных в жидкость, и это вовсе не «животное электричество», как думал Гальвани. Подергивание лапок лягушки было следствием действия тока, возникающего при контакте разных металлов (медные крючки и стальной скальпель).

Вольта покажет те же явления, которые демонстрировал Гальвани на мертвой лягушке, но на совершенно неживом самодельном электрометре, и даст в 1800 году точное объяснение возникновению тока: «проводник второго класса (жидкий) находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов… Вследствие этого возникает электрический ток того или иного направления».

В одном из первых экспериментов Вольта опустил в банку с кислотой две пластинки — цинковую и медную — и соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток.

Так был изобретён «элемент Вольта» — первый гальванический элемент. Для удобства Вольта придал ему форму вертикального цилиндра (столба), состоящего из соединённых между собой колец цинка, меди и сукна, пропитанных кислотой. Вольтов столб высотою в полметра создавал напряжение, чувствительное для человека.

Поскольку начало исследованиям положил Луиджи Гальвани, то и название сохранило память о нем в своем названии.

Гальванический элемент — это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Таким образом, в гальванических элементах химическая энергия переходит в электрическую.

Гальванические элементы сегодня

Гальванические элементы сегодня называют батарейками. Широко распространены три типа батареек: солевые (сухие), щелочные (их называют еще алкалиновыми, «alkaline» в переводе с английского - «щелочной») и литиевые. Принцип их работы — все тот же, описанный Вольта в 1800 году: два металла , и во внешней замкнутой цепи возникает электрический ток.

Напряжение батарейки зависит как от используемых металлов, так и от количества элементов в «батарейке». Батарейки, в отличие от аккумуляторов, не способны к восстановлению своих свойств, поскольку в них происходит прямое преобразование энергии химической, то есть энергии составляющих батарейку реагентов (восстановителя и окислителя), в энергию электрическую.

Входящие в батарейку реагенты, в процессе ее работы расходуются, ток при этом постепенно уменьшается, поэтому действие источника заканчивается после того как реагенты прореагируют полностью.

Щелочные и солевые элементы (батарейки) широко применяются для питания разнообразных электронных устройств, радиоаппаратуры, игрушек, а литиевые чаще всего можно встретить в портативных медицинских приборах типа глюкометров или в цифровой технике вроде фотоаппаратов.

Марганцево-цинковые элементы, которые называют солевыми батарейками — это «сухие» гальванические элементы, внутри которых нет жидкого раствора электролита.

Цинковый электрод (+) — это катод в форме стакана, а анодом служит порошкообразная смесь из диоксида марганца с графитом. Ток течет через графитовый стержень. В качестве электролита используется паста из раствора хлорида аммония с добавлением крахмала или муки для загущения, чтобы ничего не текло.

Обычно производители батареек не указывают точный состав солевых элементов, тем не менее, солевые батарейки являются самыми дешевыми, их обычно используют в тех устройствах, где энергопотребление крайне низко: в часах, в пультах дистанционного управления, в электронных термометрах и т. п.

Понятие "номинальная емкость" редко употребляется для характеристики марганцево-цинковых батареек, так как их емкость сильно зависит от режимов и условий эксплуатации. Основными недостатками этих элементов являются значительная скорость снижения напряжения на всем протяжении разряда и значительное уменьшение отдаваемой емкости при увеличении тока разряда. Конечное разрядное напряжение устанавливают в зависимости от нагрузки в интервале 0,7-1,0 В.

Важна не только величина тока разряда, но и временной график нагрузки. При прерывистом разряде большими и средними токами работоспособность батареек заметно увеличивается по сравнению с непрерывным режимом работы. Однако при малых разрядных токах и многомесячных перерывах в работе емкость их может снижаться в следствии саморазряда.

Выше на графике изображены разрядные кривые для средней солевой батарейки за 4, 10, 20 и 40 часов для сравнения с щелочной, о которой речь пойдет далее.

Щелочной элемент питания — марганцево-цинковый гальванический элемент питания, в котором в качестве катода используется диоксид марганца, в качестве анода — порошкообразный цинк, а в качестве электролита — раствор щёлочи, обычно в виде пасты гидроксида калия.

Эти батарейки обладают целым рядом преимуществ (в частности, существенно большей ёмкостью, лучшей работой при низких температурах и при больших токах нагрузки).

Щелочные батарейки, в сравнении с солевыми, могут обеспечивать больший ток в течение длительного времени. Больший ток становится возможным, поскольку цинк здесь используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия в виде пасты.

Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), щелочные батарейки наиболее распространены в настоящее время.

В электрических игрушках, в портативной медицинской технике, в электронных приборах, в фотоаппаратах — всюду применяются щелочные батарейки. Они служат в 1,5 раза дольше солевых, если разряд идет малым током. На графике изображены разрядные кривые при различных токах для сравнения с солевой батарейкой (график был приведен выше) за 4, 10, 20 и 40 часов.

Литиевые батарейки

Еще одним достаточно распространенным видом гальванических элементов являются литиевые батарейки - одиночные неперезаряжаемые гальванические элементы, в которых в качестве анода используется литий или его соединения. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов.

Катод и электролит литиевого элемента могут быть очень разными, поэтому термин «литиевый элемент» объединяет группу элементов с одинаковым материалом анода. В качестве катода могут использоваться например: диоксид марганца, монофторид углерода, пирит, тионилхлорид и др.

Литиевые батарейки отличается от других элементов питания высокой продолжительностью работы и высокой стоимостью. В зависимости от выбранного типоразмера и используемых химических материалов, литиевый элемент питания может производить напряжение от 1,5 В (совместим с щелочными батареями) до 3,7 В.

Эти элементы питания обладают наивысшей емкостью на единицу массы и длительным временем хранения. Литиевые элементы широко применяются в современной портативной электронной технике: для питания часов на материнских платах компьютеров, для питания портативных медицинских приборов, наручных часов, калькуляторов, в фототехнике и т. д.

На графике выше приведены разрядные кривые для двух литиевых батареек от двух популярных производителей. Начальный ток составлял 120 мА (на резистор порядка 24 Ома).