Дробные неравенства с квадратными уравнениями. Квадратные неравенства

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое "квадратное неравенство"? Не вопрос!) Если взять любое квадратное уравнение и заменить в нём знак "=" (равно) на любой значок неравенства (> ≥ < ≤ ≠ ), получится квадратное неравенство. Например:

1. x 2 -8x+12 0

2. -x 2 +3x > 0

3. x 2 4

Ну, вы поняли...)

Я не зря здесь связал уравнения и неравенства. Дело в том, что первый шаг в решении любого квадратного неравенства - решить уравнение, из которого это неравенство сделано. По этой причине - неспособность решать квадратные уравнения автоматически приводит к полному провалу и в неравенствах. Намёк понятен?) Если что, посмотрите, как решать любые квадратные уравнения. Там всё подробно расписано. А в этом уроке мы займёмся именно неравенствами.

Готовое для решения неравенство имеет вид: слева - квадратный трёхчлен ax 2 +bx+c , справа - ноль. Знак неравенства может быть абсолютно любой. Первые два примера здесь уже готовы к решению. Третий пример надо ещё подготовить.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Квадратное неравенство – это неравенство, в котором переменная возводится в квадрат ( x 2 {\displaystyle x^{2}} ) и имеет два корня. График такого неравенства представляет собой параболу и пересекает ось Х в двух точках. Решение неравенства подразумевает нахождение таких значений x {\displaystyle x} , при которых неравенство верно. Корни неравенства можно записать в алгебраической форме, а также отобразить их на числовой прямой или координатной плоскости.

Шаги

Часть 1

Разложение неравенства на множители

    Запишите неравенство в стандартной форме. Стандартная форма квадратного неравенства представляет собой следующий трехчлен: a x 2 + b x + c < 0 {\displaystyle ax^{2}+bx+c<0} , где a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} – коэффициенты, и a ≠ 0 {\displaystyle a\neq 0} .

    Найдите два одночлена, при перемножении которых получится первый член неравенства. Чтобы решить неравенство, нужно разложить его на два бинома (двучлена), при перемножении которых получится исходное неравенство, записанное в стандартной форме. Бином – это выражение с двумя одночленами. Помните, что биномы перемножаются по определенному правилу . Для начала найдите два одночлена, каждый из которых является первым одночленом соответствующего бинома.

    Найдите два числа, при перемножении которых получится третий член неравенства, записанного в стандартной форме. При этом сумма таких чисел должна быть равна коэффициенту при втором члене неравенства. Скорее всего, здесь числа нужно искать методом проб и ошибок, чтобы они удовлетворяли сразу двум описанным условиям. Обратите внимание на знак («плюс» или «минус»), который стоит перед третьим членом неравенства.

    Часть 2

    Нахождение корней неравенства
    1. Определите, имеют ли оба бинома одинаковые знаки. Если произведение биномов больше нуля, то оба бинома будут либо отрицательными (меньше 0), либо положительными (больше 0), потому что минус на минус дает плюс, и плюс на плюс тоже дает плюс.

      Определите, имеют ли оба бинома разные (противоположные) знаки. Если произведение биномов меньше нуля, то один бином будет отрицательным (меньше 0), а второй будет положительным (больше 0), потому что минус на плюс дает минус.

      Запишите варианты из двух неравенств, чтобы найти корни исходного неравенства. Для этого каждый бином превратите в неравенство, учитывая тот факт, что оба бинома имеют одинаковые или разные знаки.

      Решите два неравенства первого варианта. x {\displaystyle x}

      • Например, два неравенства первого варианта: x + 7 < 0 {\displaystyle x+7<0} И x − 3 > 0 {\displaystyle x-3>0}
      • Таким образом, первая пара корней исходного неравенства: x < − 7 {\displaystyle x<-7} и x > 3 {\displaystyle x>3}
    2. Проверьте действительность первой пары корней. Для этого найдите значения x {\displaystyle x}

      Решите два неравенства второго варианта. Для этого изолируйте переменную x {\displaystyle x} в каждом неравенстве. Помните, что если умножить или разделить обе стороны неравенства на отрицательное число, знак неравенства меняется на противоположный.

      • Например, два неравенства второго варианта: x + 7 > 0 {\displaystyle x+7>0} И x − 3 < 0 {\displaystyle x-3<0}
      • Таким образом, вторая пара корней исходного неравенства: x > − 7 {\displaystyle x>-7} и x < 3 {\displaystyle x<3}
    3. Проверьте действительность второй пары корней. Для этого найдите значения x {\displaystyle x} , удовлетворяющие обоим найденным корням. Если такие значения существуют, корни действительны; в противном случае корнями можно пренебречь.

    Часть 3

    Отображение корней неравенства на числовой прямой

      Нарисуйте числовую прямую. Сделайте это так, как требуется (в задаче или преподавателем). Если конкретных требований нет, под числовой прямой напишите числа, соответствующие найденным ранее корням (значениям x {\displaystyle x} ). Также можно написать несколько чисел, которые больше или меньше найденных значений; так вам будет проще работать с числовой прямой.

      На числовой прямой нарисуйте кружки, обозначающие найденные значения x {\displaystyle x} . Кружки рисуйте непосредственно над числами. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) найденного значения, кружок не закрашивается. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) найденному значению, кружок закрашивается, потому что множество решений включает это значение.

      На числовой прямой заштрихуйте область, определяющую множество решений. Если x {\displaystyle x} больше найденного числа, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если x {\displaystyle x} меньше найденного числа, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного. Если множество решений лежит между двумя числами, заштрихуйте область между этими числами.

    Часть 4

    Отображение корней неравенства на координатной плоскости

      На координатную плоскость нанесите точки пересечения с осью Х. Найденные корни являются координатами «х» точек пересечения графика с осью Х.

      Найдите ось симметрии. Ось симметрии – это прямая, которая проходит через вершину параболы и делит ее на две зеркально симметричные ветви. Чтобы найти ось симметрии, воспользуйтесь формулой x = − b 2 a {\displaystyle x={\frac {-b}{2a}}} , где a {\displaystyle a} и b {\displaystyle b} – это коэффициенты в исходном квадратном неравенстве.

Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

Чтобы разобраться, как решать квадратные уравнения, нам потребуется разобраться, что же такое квадратичная функция, и какими свойствами она обладает.

Наверняка ты задавался вопросом, зачем вообще нужна квадратичная функция? Где применим её график (парабола)? Да стоит только оглядеться, и ты заметишь, что ежедневно в повседневной жизни сталкиваешься с ней. Замечал, как на физкультуре летит брошенный мяч? «По дуге»? Самым верным ответом будет «по параболе»! А по какой траектории движется струя в фонтане? Да, тоже по параболе! А как летит пуля или снаряд? Все верно, тоже по параболе! Таким образом, зная свойства квадратичной функции, можно будет решать многие практические задачи. К примеру, под каким углом необходимо кинуть мяч, чтобы обеспечить наибольшую дальность полёта? Или, где окажется снаряд, если запустить его под определённым углом? и т.д.

Квадратичная функция

Итак, давай разбираться.

К примеру, . Чему здесь равны, и? Ну, конечно, и!

А что, если, т.е. меньше нуля? Ну конечно, мы «грустим», а, значит, ветви будут направлены вниз! Давай посмотрим на графике.

На этом рисунке изображён график функции. Так как, т.е. меньше нуля, ветви параболы направлены вниз. Кроме того, ты, наверное, уже заметил, что ветви этой параболы пересекают ось, а значит, уравнение имеет 2 корня, а функция принимает как положительные и отрицательные значения!

В самом начале, когда мы давали определение квадратичной функции, было сказано, что и - некоторые числа. А могут ли они быть равны нулю? Ну конечно, могут! Даже открою еще больший секрет (который и не секрет вовсе, но упомянуть о нем стоит): на эти числа (и) вообще никакие ограничения не накладываются!

Ну что, давай посмотрим, что будет с графиками, если и равны нулю.

Как видно, графики рассматриваемых функций (и) сместились так, что их вершины находятся теперь в точке с координатами, то есть на пересечении осей и, на направлении ветвей это никак не отразилось. Таким образом, можно сделать вывод, что и отвечают за «передвижения» графика параболы по системе координат.

График функции касается оси в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения больше либо равные нулю.

Придерживаемся той же логики с графиком функции. Он касается оси x в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения меньше либо равные нулю, то есть.

Таким образом, чтобы определить знак выражения, первое, что необходимо сделать - это найти корни уравнения. Это нам очень пригодится.

Квадратное неравенство

Квадратное неравенство - это неравенство, состоящее из одной квадратичной функции. Таким образом, все квадратные неравенства сводятся к следующим четырём видам:

При решении таких неравенств нам пригодятся умения определять, где квадратичная функция больше, меньше, либо равна нулю. То есть:

  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений, при котором парабола лежит выше оси.
  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений x, при котором парабола лежит ниже оси.

Если неравенства нестрогие (и), то корни (координаты пересечений параболы с осью) включаются в искомый числовой промежуток, при строгих неравенствах - исключаются.

Это все достаточно формализовано, однако не надо отчаиваться и пугаться! Сейчас разберём примеры, и все станет на свои места.

При решении квадратных неравенств будем придерживаться приведённого алгоритма, и нас ждёт неизбежный успех!

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства «=»).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там, где парабола выше оси, ставим « », а там, где ниже - « ».
5) Выписываем интервал(ы), соответствующий « » или « », в зависимости от знака неравенства. Если неравенство нестрогое , корни входят в интервал, если строгое - не входят.

Разобрался? Тогда вперёд закреплять!

Ну что, получилось? Если возникли затруднения, то разбирайся в решениях.

Решение:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство нестрогое, поэтому корни включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство строгое, поэтому корни не включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

данное уравнение имеет один корень

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает неотрицательные значения. Так как неравенство нестрогое, то ответом будет.

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично нарисуем график параболы и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает положительные значения, следовательно, решением неравенства будет интервал:

КВАДРАТНЫЕ НЕРАВЕНСТВА. СРЕДНИЙ УРОВЕНЬ

Квадратичная функция.

Прежде чем говорить о теме «квадратные неравенства», вспомним что такое квадратичная функция и что из себя представляет её график.

Квадратичная функция - это функция вида,

Другими словами, это многочлен второй степени .

График квадратичной функции - парабола (помнишь, что это такое?). Её ветви направлены вверх, если "a) функция принимает только положительные значения при всех, а во втором () - только отрицательные:

В случае, когда у уравнения () ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси:

Тогда, аналогично предыдущему случаю, при функция неотрицательна при всех, а при - неположительна.

Так вот, мы ведь недавно уже научились определять, где квадратичная функция больше нуля, а где - меньше:

Если квадратное неравенство нестрогое , то корни входят в числовой промежуток, если строгое - не входят.

Если корень только один, - ничего страшного, будет везде один и тот же знак. Если корней нет, всё зависит только от коэффициента: если, то всё выражение больше 0, и наоборот.

Примеры (реши самостоятельно):

Ответы:

Корней нет, поэтому всё выражение в левой части принимает знак старшего коэффициента: при всех. А значит, решений неравенства нет.

Если квадратичная функция в левой части «неполная» - тем проще находить корни:

КВАДРАТНЫЕ НЕРАВЕНСТВА. КОРОТКО О ГЛАВНОМ

Квадратичная функция - это функция вида: ,

График квадратичной функции - парабола. Её ветви направлены вверх, если, и вниз, если:

  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси.
  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси.

Виды квадратных неравенств:

Все квадратные неравенства сводятся к следующим четырём видам:

Алгоритм решения:

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства « »).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим « », а там где ниже - « ».
5) Выписываем интервал(ы), соответствующий(ие) « » или « », в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое - не входят.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...

На этом уроке мы продолжим рассмотрение рациональных неравенств и их систем, а именно: систему из линейных и квадратных неравенств. Вначале вспомним, что такое система двух линейных неравенств с одной переменной. Далее рассмотрим систему квадратных неравенств и методику их решения на примере конкретных задач. Подробно рассмотрим так называемый метод крыши. Разберем типовые решения систем и в конце урока рассмотрим решение системы с линейным и квадратным неравенством.

2. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

3. Центр образования «Технология обучения» ().

4. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 58(а,в); 62; 63.