Явление дифракции света принцип гюйгенса френеля. Принцип Гюйгенса – Френеля

Лекция 21. Дифракция света.

Принцип Гюйгенса-Френеля. Метод зон Френеля. Векторная диаграмма. Дифракция от круглого отверстия и круглого диска. Дифракция Фраунгофера от щели. Предельный переход от волновой оптики к геометрической .

Дифракция – это явление отклонения от прямолинейного распространения света, если оно не может быть следствием отражения, преломления или изгибания световых лучей, вызванным пространственным изменением показателя преломления. При этом отклонение от законов геометрической оптики тем меньше, чем меньше длина волны света.

Замечание . Между дифракцией и интерференцией нет принципиального различия. Оба явления сопровождаются перераспределением светового потока в результате суперпозиции волн.

Примером дифракции может служить явление при падении света на непрозрачную перегородку с отверстием. В этом случае на экране за перегородкой в области границы геометрической тени наблюдается дифракционная картина.

Принято различать два вида дифракции. В случае, когда волну, падающую на перегородку, можно описать системой параллельных друг другу лучей (например, когда источник света находится достаточно далеко), то говорят о дифракции Фраунгофера или дифракции в параллельных лучах. В остальных случаях говорят о дифракции Френеля или дифракции в расходящихся лучах.

При описании явлений дифракции необходимо решить систему уравнений Максвелла с соответствующими граничными и начальными условиями. Однако нахождение точного решения в большинстве случаев является весьма затруднительным. Поэтому, в оптике, часто применяют приближённые методы, основанные на принципе Гюйгенса в обобщенной формулировке Френеля или Кирхгофа.

Принцип Гюйгенса.

Формулировка принципа Гюйгенса . Каждая точка среды, до которой в некоторый момент времени t дошло волновое движение, служит источником вторичных сферических волн . Огибающая этих волн даёт положение фронта волны в следующий близкий момент времени t +dt . Радиусы вторичных волны равны произведению фазовой скорости света на интервал времени
.

Иллюстрация этого принципа на примере волны падающей на непрозрачную перегородку с отверстием показывает, что волна проникает в область геометрической тени. Это является проявлением дифракции.

Однако принцип Гюйгенса не даёт оценок интенсивности волн, распространяющихся в различных направлениях.

Принцип Гюйгенса-Френеля.

Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн. По амплитудам вторичных волн с учётом их фаз можно найти амплитуду результирующей волны в любой точке пространства.

Каждый малый элемент волновой поверхности является источником вторичной сферической волны, амплитуда которой пропорциональна величине элемента dS и уравнение которой вдоль луча имеет вид

здесьa 0 - коэффициент, пропорциональный амплитуде колебаний точек на волновой поверхности dS ,
- коэффициент, зависящий от угла между лучом и вектором
, и такой, что при
он принимает максимальное значение, а при
- минимальное (близкое к нулю).

Амплитуда результирующего колебания в некоторой точке наблюдения Р определяется аналитическим выражением принципа Гюйгенса-Френеля, которое вывел Кирхгоф :

Интеграл берётся по волновой поверхности, зафиксированной в некоторый момент времени. Для свободно распространяющейся волны значение интеграла не зависит от выбора поверхности интегрирования S .

Явное вычисление амплитуды результирующего колебания по формуле Кирхгофа довольно трудоёмкая процедура, поэтому на практике применяют приближённые методы нахождения значения этого интеграла.

Для нахождения амплитуды колебаний в точке наблюдения P всю волновую поверхность S разбивают на участки (зоны Френеля ). Предположим, что мы наблюдаем дифракцию в расходящихся лучах (дифракцию Френеля), т.е. рассматриваем сферическую, распространяющуюся от некоторого точечного источника L . Волна распространяется в вакууме.

Зафиксируем волновую поверхность в некоторый момент времениt . Пусть радиус этой поверхности равен a . Линия LP пересекает волновую поверхность в точке О. Предположим, что расстояние между точками О и Р равно b . От точки Р последовательно откладываем сферы, радиусы которых
. Две соседние сферы «отсекают» на волновой поверхности кольцевые участки, называемыезонами Френеля . (Как известно, две сферы пересекаются по окружности, лежащей в плоскости, перпендикулярной прямой, на которой лежат центры этих сфер). Найдём расстояние от точки О до границы зоны с номером m . Пусть радиус внешней границы зоны Френеля равен r m . Т.к. радиус волновой поверхности равен a , то .

При этом,

Поэтому
, откуда
.

Для длин волн видимого диапазона и не очень больших значений номеров m можно пренебречь слагаемым
по сравнению сm . Следовательно, в этом случае
и для квадрата радиуса получаем выражение
, в котором опять можно пренебречь последним слагаемым. Тогда радиусm -й зоны Френеля (для дифракции в расходящихся лучах)

.

Следствие . Для дифракции в параллельных лучах (дифракции Фраунгофера) радиус зон Френеля получается предельных переходом a :

.

Теперь сравним площади зон Френеля. Площадь сегмента сферической поверхности, лежащей внутри m -й зоны, как известно, равна
. Зона с номеромm заключена между границами зон с номерами m и m -1. Поэтому её площадь равна

.

После преобразований выражение примет вид
.

Если пренебречь величиной
, то из выражения
следует, что при небольших номерах площадь зон не зависит от номераm .

Нахождение результирующей амплитуды в точке наблюденияР производится следующим образом. Т.к. излучаемые вторичные волны являются когерентными и расстояния от соседних границ до точки Р отличаются на половину длины волны, то разность фаз колебаний от вторичных источников на этих границах, приходящих в точку Р , равна  (как говорят, колебания приходят в противофазе). Аналогично, для любой точки какой-нибудь зоны обязательно найдётся точка в соседней зоне, колебания от которой приходят в Р в противофазе. Величина амплитуды волнового вектора пропорциональна величине площади зоны
. Но площади зон одинаковые, а с ростом номераm возрастает угол , поэтому величина
убывает. Поэтому можно записать упорядоченную последовательность амплитуд. На амплитудно -векторной диаграмме с учётом разности фаз эта последовательность изображается противоположно направленными векторами, поэтому

Разобьем первую зону на большое количество N внутренних зон таким же спосбом, как и выше, но теперь расстояния от границ двух соседних внутренних зон до точки Р будут отличаться на малую величину
. Поэтому разность фаз волн, приходящих волн в точкуР будет равна малой величине
. На амплитудно-векторной диаграмме вектор амплитуды от каждой из внутренних зон будет повернут на малый угол относительно предыдущего, поэтому амплитуде суммарного колебания от нескольких первых внутренних зон будет соответствовать вектор
соединяющий начало и конец ломаной линии. При увеличении номера внутренней зоны суммарная разность фаз будет нарастать и на границе первой зоны станет равной. Это означает, вектор амплитуды от последней внутренней зоны
направлен противоположно вектору амплитуды от первой внутренней зоны
. В пределе бесконечно большого числа внутренних зон эта ломаная линия перейдет в часть спирали.

Амплитуде колебаний от первой зоны Френеля тогда будет соответствовать вектор, от двух зон -и т.д. В случае, если между точкойР и источником света нет никаких преград, из точки наблюдения будет видно бесконечное число зон, поэтому спираль будет навиваться на точку фокуса F . Поэтому свободной волне с интенсивностью I 0 соответствует вектор амплитуды , направленный в точкуF .

Из рисунка видно, что для амплитуды от первой зоны можно получить оценку
, поэтому интенсивность от первой зоны
- в 4 раза больше интенсивности падающей волны. Равенство
можно трактовать и по-другому. Если для бесконечного числа открытых зон суммарную амплитуду записать в виде

(m – четное число), то из
следует оценка
.

Замечание . Если каким-то образом изменить фазы колебаний в точке Р от чётных или нечётных зон на , или закрыть чётные или нечётные зоны, то суммарная амплитуда увеличится по сравнению с амплитудой открытой волны. Таким свойством обладает зонная пластинка - плоскопараллельная стеклянная пластинка с выгравированными концентрическими окружностями, радиус которых совпадает с радиусами зон Френеля. Зонная пластинка «выключает» чётные либо нечётные зоны Френеля, что приводит к увеличению интенсивности света в точке наблюдения.

Дифракция на круглом отверстии.

Рассуждения, приведённые выше, позволяют сделать вывод, что амплитуда колебания в точкеР зависит от числа зон Френеля. Если для точки наблюдения открыто нечётное число зон Френеля, то в этой точке будет максимум интенсивности. Если открыто чётное число зон – то минимум.

Дифракционная картина от круглого отверстия имеет вид чередующихся светлых и тёмных колец. При увеличении радиуса отверстия (и увеличения числа зон Френеля) чередование тёмных и светлых колец будет наблюдаться только вблизи границы геометрической тени, а внутри освещённость практически не будет меняться.

Гюйгенсом было сформулировано предположение, согласно которому каждая точка фронта волны, созданной каким-либо пер­вичным источником, является вторичным источником сферической волны. Это предположение называют принципом Гюйгенса .

Под фронтом волны обычно понимают поверхность, отделяющую область, в которой в данный момент времени уже имеют место электромагнитные колебания, от области, в которую волна еще не успела распространиться. При описании распространяющихся монохроматических электромагнитных волн часто вместо термина поверхность равных фаз используют термин фронт волны, что, строго говоря, не совсем корректно.

Пусть известна поверхность S 1(рис. 1.24), на которой фаза функции, характеризующей волну, в момент t = t0 равна некоторому значению Ψ0. В следующий момент времени t = t0 + Δt поверхность, соответствующая значению фазы Ψ0, уже не будет совпадать с S1. Для определения этой новой поверхности, согласно принципу Гюйгенса, нужно каждую точку поверхности S1 принять за центр сферы радиуса r0 = t, где с скорость распространения волны. Тогда поверхность S2 (рис. 1.24), огибающая семейство построенных таким образом сфер, проведенная с учетом направления распространения волны, будет искомой поверхностью, на которой фаза в момент t = t0+ Δt равна Ψ0.

Рис.1.24. Поверхности S1 и S2

Принцип Гюйгенса справедлив для любых волновых процессов и позволяет проследить за перемещением фронта волны или поверхности равных фаз, начиная с момента времени, в который являются известными фронт волны, или, соответственно, ПРФ. Математическая формулировка принципа Гюйгенса впервые была дана Кирхгофом. Поэтому указанный принцип обычно называют принципом Гюйгенса-Кирхгофа.

Принцип Гюйгенса-Кирхгофа позволяет находить поле и в том случае, когда поверхность, окружающая источники, не совпадает с поверхностью равных фаз. При этом, конечно, необходимо учи­тывать распределение фаз эквивалентных источников.

Принцип Гюйгенса-Кирхгофа широко применяется при расчете диаграмм направленности различных излучающих систем СВЧ диапазона. Основные типы антенн этого диапазона: щелевые, рупорные и зеркальные (схематически изображенные на рис. 1.25, а, б, в, соответственно) можно представить в виде замкнутой поверхности, одна часть которой (S0) является металлической, а другая (SΣ)представляет собой поверхность раскрыва (через нее электромагнитная энергия излучается в окружающее простран­ство). Поле на SΣ обычно известно с той или иной степенью точности, и его можно заменить распределением эквивалентных источников.

Рис.1.25. Основные типы антенн СВЧ диапазона: а) щелевая; б) рупорная; в) зеркальная

Кроме того, при приближенных расчетах часто прене­брегают затеканием электрических токов на внешнюю поверхность антенны, т.е. предполагают, что на поверхности S0 отсутствуют также электрические токи:

В таком приближении поле в дальней зоне определяется только эквивалентными поверхностными электрическими и магнит­ными токами или, что то же самое, касательными составляющими векторов и на поверхности SΣ.

При вычислении поля можно воспользоваться принципом суперпозиции: разбить поверхность SΣ на элементарные площадки ΔS, найти поле, создаваемое эквивалентными токами каждой площадки, а затем просуммировать полученные результаты.

Дифракцией называется явление отклонения света от прямолинейности распространения, огибание им малых препятствий, проникновение в область геометрической тени. Между интерференцией и дифракцией нет существенного физи­ческого различия. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн. По историче­ским причинам перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом дискретных когерентных источников, принято называть интерферен­цией волн. Перераспределение интенсивности, возникающее вслед­ствие суперпозиции волн, возбуждаемых когерентными источни­ками, расположенными непрерывно, принято называть дифракцией. Различают два вида дифракции (рисунок 38): дифракция Френеля (а) и дифракция Фраунгофера (б). Если источник света S и точка наблюдения Р расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку Р, образуют практически параллельные пучки, говорят о дифракции в параллельных лучах или о дифракции Фраунгофера. В противном случае говорят о дифракции Френеля.

При рассмотрении дифракционных явлений Френель исходил из нескольких основных утверждений, принимаемых без доказательств и составляющих содержание так называемого принципа Гюйгенса – Френеля:

1) Принцип Гюйгенса : Каждая точка фронта волны, служит источником вторичных волн, распространяющихся с характерной для данной среды скоростью, а огибающая этих волн задает положение волнового фронта в следующий момент времени. (Фронтом волны называется геометрическое место точек, до которых к данному моменту времени дошли колебания).

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рисунок 39).

Согласно Гюйгенсу, каждая точка выделяемого

отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента време­ни, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

2) Принцип интерференции . Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн: Все точки фронта волны колеблются с одинаковой частотой и в одинаковой фазе и, следовательно, представляют собой совокупность когерентных источников. Волны от этих когерентных источников распространяются только вперёд и интерферируют между собой.

3) Если часть волнового фронта прикрыть непрозрачными экранами, то вторичные волны испускают только открытые участки фронта волны, причём так, как при отсутствии экранов.

4) Мощности излучения равных по площади участков фронта волны равны.

Пусть поверхность S (рисунок 40) представляет собой положение волнового фронта в некоторый момент. Чтобы определить колебания в некоторой точке P, вызванные волной, по Френелю нужно сначала определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от всех не загороженных каким-либо препятствием элементов поверхности S (ΔS 1 , ΔS 2 и т. д.), и затем сложить эти колебания с учетом их амплитуд и фаз.

В общем случае расчет интерференции вторичных волн довольно сложная задача и сводится, в принципе, к громоздкому интегрированию. Для упрощения этого интегрирования Френель предложил изящный метод разделения фронта волны на зоны. С этим методом, получившим название метода зон Френеля, мы познакомимся при расчёте дифракционных явлений в некоторых частных случаях.

Как известно, свет проявляет свойства, волны и частицы. Одна из теорий, описывающих его поведение - это волновая теория света. Важнейший постулат этой теории - принцип Гюйгенса-Френеля. Он описывает и объясняет распространение волн, частным случаем которых и является свет - электромагнитное излучение в оптическом диапазоне.

Это утверждение объясняет и описывает то, как распространяются колебания, например, свет. Оно состоит из двух частей. Первую часть (принцип Гюйгенса) предложил Христиан Гюйгенс в 1678 году. Он предположил, что при распространении излучения из каждой точки волнового фронта начинают исходить новые сферические волны.

Волновой фронт - это поверхность, на которой возмущение находится в одинаковой фазе. Проще говоря, это граница пространства, в котором уже распространилось возмущение. Например, если бросить камень в воду, пойдут круги - волны. Их фронт в этом случае - это самый внешний круг.

Огюстен Жан Френель в 1815 году развил предположение Гюйгенса.

Важно! Его дополнение заключается в том, что поле, получившееся при распространении возмущения, создается интерференцией вторичных колебаний, которые имеют одинаковую амплитуду. Огибающая вторичных волн дает положение волнового фронта через небольшой промежуток времени.

Интерференция - это наложение волн друг на друга. При этом в одних участках колебания они взаимно усиливают друг друга, в других ослабляют. Поэтому для света получается картина из светлых и темных полосок. Пример этого — кольца Ньютона, картина из концентрических кругов, получающаяся, если плоско-выпуклую линзу положить на стеклянную пластинку.

Чтобы можно было наблюдать картину интерференции, излучение должно быть когерентным. Это значит, что оно должно иметь постоянную разность фаз и давать колебания такой же частоты, если их сложить.

Утверждение, сделанное Гюйгенсом, помогало определить только направление распространения возмущения и объясняло распространение света, как его описывает геометрическая оптика. Дополнение принципа Гюйгенса позволяет рассчитывать амплитуду и интенсивность.

Краткая формулировка

Если говорить кратко, этот постулат заключается в следующем. Колебания в любой точке пространства - это результат интерференции возмущений, излученных точками на волновой поверхности.

Для любой точки пространства колебания - это наложение вторичных когерентных колебаний, излучаемых точками волнового фронта. Таким образом, в некоторых задачах можно один источник заменить на несколько одинаковых вторичных источников.

Применение

Рассматриваемое утверждение дает возможность объяснить различные оптические явления:

  • распространение светового излучения;
  • дифракцию;
  • интерференцию;
  • отражение;
  • двулучепреломление и другие.

С помощью принципа Гюйгенса-Френеля можно рассчитать амплитуду и интенсивность светового излучения. Для этого используются методы зон Френеля.

Зоны Френеля

Это утверждение важно для решения задач по дифракция света по принципу Гюйгенса-Френеля. Строгое решение таких задач математически очень сложно, поэтому пользуются приближенными методами.

Благодаря открытиям Гюйгенса и Френеля в таких задачах можно заменить один первичный источник совокупностью вторичных источников.

Это существенно облегчает задачу, например, для сферического случая. Такой метод расчета называется методом зон Френеля.

Важно! Зоны Френеля - это участки, на которые делят поверхность, чтобы упростить расчет, например, амплитуды колебаний. На зоны можно разбить любую поверхность, через которую проходит свет.

Сферический случай

В случае сферической волны зоны Френеля выглядят как кольца. Для произвольной точки М их можно построить, проведя из этой точки сферы радиусы, различающиеся на 1/2 длины волны.

Площади зон Френеля с небольшими номерами примерно одинаковы. Они не зависят от номера зоны m. Они считаются как разница площадей сегментов сферы. Если не углубляться в детали, площади зон Френеля в этом случае находят так. Нужно умножить длину волны на радиус сферического волнового фронта R, на расстояние до точки наблюдения a и на число пи, а затем поделить на сумму R и a.

Зоны Френеля находят применение в зонных пластинках со светлыми и темными кольцами-радиусами, соответствующими размерам зон. Они работают аналогично собирающей линзе.

Дифракция

С помощью этого постулата объясняется дифракция света по принципу Гюйгенса-Френеля - огибание ими небольших предметов. Для света он дает обоснование того, почему возмущения распространяются и в область геометрической тени. Если бы они не огибали предметы, мы бы никогда не увидели полутени, все тени были бы резкими, как предполагает геометрическая оптика. Но реальная картина отличается от предположений геометрической оптики.

Пример - плоская волна, падающая на плоскость с отверстием. Когда она проходит через отверстие, все точки фронта излучают вторичные сферические колебания. С помощью построения огибающей увидим, что фронт волны оказывается там, куда согласно геометрической оптике свет попадать не должен.

Френель обосновал явление дифракции света по принципу Гюйгенса-Френеля и создал метод ее расчета. Развив принцип Гюйгенса, он установил, что:

  • все участки волнового фронта колебания, исходящего из одной точки, когерентны;
  • излучение одних участков волнового фронта не оказывает влияния на другие;
  • колебания излучаются в основном перпендикулярно поверхности волнового фронта;
  • равные по площади участки волнового фронта излучают одинаковую интенсивность.

Дифракция на прямоугольной щели

Прямоугольную щель можно поделить на N зон в виде узких полосок, параллельных ее длинной стороне. Если наблюдатель находится далеко от источника, то задача сводится к расчету интерференции от N одинаковых источников.

В таком случае интерференционная картина выглядит как светлые и темные полосы. Наиболее яркая светлая полоса - главный максимум - находится в центре.

Преломление

Когда свет попадает из одной среды в другую, например, из воздуха в воду, он меняет направление, т.е. преломляется. Согласно принципу Гюйгенса-Френеля на границе сред из каждой точки исходит вторичное излучение.

Из принципа Гюйгенса можно получить, что показатель преломления равен отношению скоростей светового колебания в одной и другой среде. Также можно найти и угол, на который отклоняется свет.

Видео

В интернете можно найти видео, демонстрирующие, как работает принцип Гюйгенса-Френеля. Например, наглядная демонстрация для отражения плоской волны от поверхности доказывает, что угол падения и угол отражения равны.

Если волна падает на плоскость, отражаясь от нее, различные точки волновой поверхности доходят до плоскости неодновременно. Начинают распространяться вторичные колебания.

Касательная к ним - это и есть волновой фронт отраженного колебания. Решив простую геометрическую задачу о равенстве треугольников, можно установить, что углы, под которыми излучение падает и отражается, равны.

Можно построить изображение источника в плоском зеркале. Фронт отраженного возмущения будет сферой с центром в некоторой точке. Эта точка и будет мнимым изображением плоского источника в зеркале.

Можно найти видео, иллюстрирующие и другие физические явления. Например, можно пронаблюдать зоны Френеля для электромагнитного колебания. Также можно найти лекции, посвященные принципу Гюйгенса-Френеля и другим вопросам оптики.

Полезное видео

Заключение

Принцип Гюйгенса-Френеля дает возможность объяснить такие оптические явления, как рефракцию, дифракцию, распространение света по прямой, интерференцию. С его помощью можно приближенно решать задачи оптики, которые очень трудно решить точными методами. Это утверждение - основной постулат волновой теории и применимо не только к распространению светового излучения, но и к другим волновым процессам.

Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна без истолкования с волновой точки зрения фундаментального и хорошо подтвержденного опытом закона прямолинейного распространения света.

Волновые представления в той первоначальной форме , в которой их развивал Гюйгенс («Трактат о свете», 1690), не могли дать удовлетворительного ответа на поставленный вопрос. В основу учения о распространении света Гюйгенсом положен принцип, носящий его имя. Согласно представлениям Гюйгенса, свет, по аналогии со звуком, представляет собой волны, распространяющиеся в особой среде - эфире, занимающем все пространство, в частности заполняющем собой промежутки между частицами любого вещества, которые как бы погружены в океан эфира. С этой точки зрения естественно было считать, что колебательное движение частиц эфира передается не только той частице, которая лежит на «пути» светового луча, т. е. на прямой, соединяющей источник света L , (рис. 1.1) с рассматриваемой точкой А , но всем частицам, примыкающим к А , т. е. световая волна распространяется из А во все стороны, как если бы точка А служила источником света. Поверхность, огибающая эти вторичные волны, и представляет собой поверхность волнового фронта. Для случая, изображенного на рис. 1.1, эта огибающая (жирная дуга) представится частью шаровой поверхности с центром в L , ограниченной конусом, ведущим к краям круглого отверстия в экране МN . Принцип Гюйгенса позволил разъяснить вопросы отражения и преломления света, включая и сложную проблему о двойном лучепреломлении; но задача о прямолинейном распространении света по существу решена не была, ибо она не была поставлена в связь с явлениями отступления от прямолинейности, т. е. с явлениями дифракции.

Причина лежит в том, что принцип Гюйгенса в его первоначальной форме был принципом, областью применения которого являлась область геометрической оптики. Выражаясь языком волновой оптики, он относился к случаям, когда длину волны можно было считать бесконечно малой по сравнению с размерами волнового фронта. Поэтому он позволял решать лишь задачи о направлении распространения светового фронта и не затрагивал по существу вопроса об интенсивности волн, идущих по разным направлениям. Этот недостаток воспол
нил Френель, который вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции волн. Благодаря этому огибающая поверхность элементарных волн, введенная Гюйгенсом чисто формально, приобрела ясное физическое содержание как поверхность, где благодаря взаимной интерференции элементарных волн результирующая волна имеет заметную интенсивность.

Модифицированный таким образом принцип Гюйгенса-Френеля становится основным принципом волновой оптики и позволяет исследовать вопросы, относящиеся к интенсивности результирующей волны в разных направлениях, т. е. решать задачи о дифракции света (см. ниже). В соответствии с этим был решен вопрос о границах применимости закона прямолинейного распространения света, и принцип Гюйгенса-Френеля оказался применимым к выяснению закона распространения волн любой длины.

Для отыскания интенсивности (амплитуды) результирующей волны нужно, согласно Френелю, следующим образом формулировать принцип Гюйгенса.

Окружим источник L воображаемой замкнутой поверхностью S любой формы (рис. 1.2). Правильное значение интенсивности (амплитуды) возмущения в любой точке В за пределами S может быть получено так: устраним L , а поверхность S будем рассматривать как светящуюся поверхность, излучение отдельных элементов которой, приходя в В , определяет своей совокупностью действие в этой точке. Излучение каждого элемента ds поверхности S надо представлять себе как сферическую волну (вторичная волна), которая, приносит в точку В колебание:

,

где а 0 определяется амплитудой, а φ - фазой действительного колебания, дошедшего от L до элемента ds , находящегося на расстоянии r от точки В . При этом размеры элемента ds предполагаются настолько малыми, что φ и r для любой части его можно считать имеющими одни и те же значения. Другими словами, каждый элемент ds рассматривается как некоторый вспомогательный источник, так что амплитуда a 0 , пропорциональна площади ds .

Постулат Френеля, позволяющий определить a 0 и φ через амплитуду и фазу дошедшего до ds колебания, представляет собой некую гипотезу, пригодность которой может быть установлена сравнением делаемых с ее помощью заключений с результатами опыта.

Так как фазы всех вспомогательных источников определяются возмущением, идущим из L , то они строго согласованы между собой, и, следовательно, вспомогательные источники когерентны . Поэтому вторичные волны, исходящие из них, будут интерферировать между собой. Их совокупное действие в каждой точке может быть определено как интерференционный эффект, и следовательно, идея Гюйгенса о специальной роли огибающей перестает быть допущением, а должна явиться лишь следствием законов интерференции. Согласно приведенному выше постулату Френеля вопрос о вспомогательных источниках, заменяющих L , решается однозначно, как только выбрана вспомогательная поверхность S. Выбор же этой поверхности вполне произволен; поэтому для каждой конкретной задачи се следует выбрать наивыгоднейшим для решения способом. Если вспомогательная поверхность S совпадает с фронтом волны, идущей из L . (представляет собой сферу с центром в S ), то все вспомогательные источники будут иметь одинаковую фазу. Если же выбор S сделан иначе, то фазы вспомогательных источников не одинаковы, но источники, конечно, остаются когерентными.

В том случае, когда между источниками L и точкой наблюдения имеются непрозрачные экраны с отверстиями, действие этих экранов может быть учтено следующим образом. Мы выбираем поверхность S так, чтобы она всюду совпадала с поверхностью экранов, а отверстия в них затягивала произвольным образом, выбранным в зависимости от разбираемой проблемы. На поверхности непрозрачных экранов амплитуды вспомогательных источников должны считаться равными нулю; на поверхности же, проходящей через отверстия экранов, амплитуды выбираются в согласии с постулатом Френеля, т. е. так, как если бы экран отсутствовал. Таким образом, предполагается, что материал экрана не играет, роли, если только экран не прозрачен.

Вычисляя результаты интерференции элементарных волн, посылаемых вспомогательными источниками, мы приходим к значению амплитуды (интенсивности) в любой точке В , т. е. определяем закономерность распространения света. Результаты этих вычислений подтверждаются данными опыта. Таким образом, по методу Гюйгенса-Френеля удается получить правильное решение вопроса о распределении интенсивности света как в случае свободного распространения световых волн (прямолинейное распространение), так и в случае наличия задерживающих экранов (дифракция).

Первой задачей, которую должен был рассмотреть Френель, выдвинув новую формулировку принципа Гюйгенса, явилась задача о прямолинейном распространении света. Френель решил ее путем рассмотрения взаимной интерференции вторичных волн, применив чрезвычайно наглядный прием, заменяющий сложные вычисления и имеющий общее значение при разборе задач о распространении волн. Метод этот получил название метода зон Френеля .

Рассмотрим действие световой волны, испущенной из точки А , в какой-либо точке наблюдения В . Согласно принципу Гюйгенса-Френеля заменим действие источника А действием воображаемых источников, расположенных на вспомогательной поверхности S .

В качестве такой вспомогательной поверхности S выберем поверхность фронта волны, идущей из А (поверхность сферы с центром А , рис.. 1.3). Вычисление результата интерференции вторичных волн очень упрощается, если применить следующий указанный Френелем прием: для вычисления действия в точке В соединяем А с В и разбиваем поверхность S на зоны такого размера, чтобы расстояния от краев зоны до В отличались на λ /2 т. е.

M 1 B – M 0 B = M 2 B – M 1 B =M 3 B – M 2 B =…= λ/2

(см. рис. 1.3). Нетрудно вычислить размеры полученных таким образом зон. Из рис. 1.4 получаем для первой зоны

r 2 =a 2 – (a – x) 2 = (b+ λ/2) 2 – (b+x) 2

Так как λ очень мало по сравнению с а пли b , то

,

и, следовательно, площадь сферического сегмента, представляющего первую, или центральную зону, есть:

Для площади сегмента, представляющего две первые зоны, найдем значение , т.е. площадь второй зоны также равна . Практически ту же площадь будет иметь и каждая из всех последующих зон. Таким образом, построение Френеля разбивает поверхность сферической волны на равновеликие зоны, каждая из которых имеет площадь

Для дальнейшего вычислении надо только принять во внимание, что действие отдельных зон на точку В тем меньше, чем больше угол φ между нормалью к поверхности зоны и направлением на В . Таким образом, действие зон постепенно убывает от центральной зоны (около М 0) к периферическим. Произвольное введение этого вспомогательного ослабляющего множителя есть один из недостатков метода Френеля.

Для получения окончательного результата можно рассуждать следующим образом: пусть действие центральной зоны в точке В выражается возбуждением колебания с амплитудой s 1 , действие соседней зоны - колебанием с амплитудой s 2 , следующей - с амплитудой s 3 и т. д. Как указано, действие зон постепенно (хотя и медленно) убывает от центра к периферии, так что s 1 > s 2 > s 3 > s 4 и т. д.; действие п -й зоны s n может быть очень малым, если п достаточно велико. Кроме того, благодаря выбранному способу разбивки на зоны легко видеть, что действия соседних зон ослабляют друг друга. Действительно, так как

M 1 B – M 0 B=λ/2 и M 2 B – M 1 B=λ/2

то воображаемые источники зоны М 0 М 1 расположены на ½ λ ближе к В , чем соответственные источники зоны М 1 М 2 , так что посылаемые колебания дойдут до В в противоположных фазах. Таким образом, для точки В действие центральной зоны ослабится действием соседней зоны и т. д. Продолжая эти рассуждения, найдем, что окончательное значение амплитуды колебания, возбужденного в точке В всей совокупностью зон, т. е. всей световой волной, будет равно:

s=s 1 – s 2 + s 3 – s 4 + s 5 – s 6 +…=s 1 – (s 2 - s 3) – (s 4 – s 5) – (s 6 – s 7) – … (1.1)

Из условия s 1 > s 2 > s 3 > s 4 ... следует, что все выражения в скобках положительны, так что s <s 1 . Освещенность Е в точке наблюдения В пропорциональна квадрату результирующей амплитуды колебаний. Следовательно, Е ~ s 2 < s 1 2 |.

Итак, амплитуда s результирующего колебания, получающегося вследствие взаимной интерференции света, идущего к точке В от различных участков нашей сферической волны, меньше амплитуды, создаваемой действием одной центральной зоны. Таким образом, действие всей волны на точку В сводится к действию ее малого участка, меньшего, чем центральная зона с площадью . Длина световой волны λ весьма мала (для зеленого света λ = 5 10 -4 мм). Поэтому даже для расстоянии а и b порядка 1 м площадь действующей части волны меньше 1 мм 2 . Следовательно, распространение света от A к В действительно происходит так, как если бы световой поток шел внутри очень узкого канала вдоль АВ , т. е. прямолинейно.

Это не значит, однако, что если мы поместим на линии АВ любой небольшой непрозрачный экран, то до точки В свет не дойдет; ведь внесение такого экрана, который прикроет, например, первую зону, нарушит правильность наших рассуждений. В этом случае выпадет первый член знакопеременного ряда (1.1), и теперь окажется, что s < |s 2 | и т. д., т. е. s меньше модуля s m , где т - номер первой открытой у края экрана зоны. Если т не велико, например, т < 10, то освещенность в точке наблюдения В на оси экрана останется почти такой же, как и в его отсутствие. Но если маленький экранчик имеет неровные края с зазубринами, сравнимыми с шириной зоны Френеля, по которой проходит этот край, то он существенно уменьшает интенсивность в точке наблюдения В.