Наследование признаков у организмов. Тема

Понятие о наследственности и изменчивости. Наследственность —

это свойство всех живых организмов сохранять и передавать свои признаки и свойства последующим поколениям. Благодаря этому каждый вид живых организмов сохраняет на протяжении длительного времени характерные для него черты.

Передача генетической (наследственной) информации от одного поколения другому называется наследованием. У организмов, которым свойственно половое размножение, ключевую роль в наследовании играют такие процессы как мейоз и оплодотворение. В ходе мейоза у каждого родителя происходит пере-комбинация наследственного материала и его распределение между гаметами. Результатом оплодотворения является объединение генетической информации, содержащейся в гаметах обоих родителей, и формирование наследственного аппарата нового организма.

Как вам известно, участки молекулы ДНК, содержащие информацию о структуре определенных белков (либо рРНК, либо тРНК), называются генами. Гены расположены в хромосомах. В ходе реализации наследственной информации, содержащейся в генах, осуществляется синтез определенных белков. Каждый белок выполняет определенную функцию, что ведет к проявлению того или иного признака организма.

Изменчивость — это способность организмов в процессе жизнедеятельности приобретать новые признаки под воздействием различных факторов среды. Благодаря изменчивости особи в пределах вида различаются между собой.

Наследственность и изменчивость организмов изучает генетика. Основным методом исследований в генетике является гибридологический метод, заключающийся в определенной системе скрещиваний организмов, отличающихся друг от друга по одной, нескольким или многим парам альтернативных признаков с последующим анализом потомства.

Кроме этого, используются цитогенетический (микроскопическое изучение хромосом), биохимический (исследование состава нуклеиновых кислот, белков и других веществ в клетках организмов), генеалогический (анализ родословных человека и животных, позволяющий устанавливать характер наследования признаков, определять вероятность их проявления в последующих

поколениях) и другие методы. В генетике широко применяются также статистические методы анализа, позволяющие выявлять закономерности наследования признаков и проявления изменчивости у живых организмов.

Изучение наследственности Грегором Менделем.

Основные закономерности наследования признаков впервые раскрыл австрийский исследователь, монах Авгу-стинского монастыря Г. Мендель в 1855—1865 гг.

Он поставил перед собой задачу — выяснить, как наследуются отдельные признаки. Для этого Г. Мендель применил гибридологический метод.

Удачно был выбран Менделем и объект исследования — горох посевной. Это растение легко культивируется, неприхотливо, дает многочисленное потомство. Из множества сортов гороха Г. Мендель выбрал те, которые четко отличались по семи парам альтернативных признаков (рис. 87). В течение двух лет Г. Мендель проверял «чистоту» каждого сорта. Для этого он предоставил растениям возможность самоопыляться (горох — самоопыляющееся растение) и использовал в своих исследованиях такие сорта, у которых потомки в ряду поколений не изменялись по внешнему виду, т. е. сохраняли признаки родительских форм. В дальнейшем такие группы организмов были названы чистыми линиями.

Итак, для проведения скрещиваний Г. Мендель отбирал растения чистых линий, отличающиеся по парам альтернативных признаков. В своей работе он сначала анализировал наследование одной пары признаков, затем двух и т. д. Важно то, что Г. Мендель вел точный учет числа потомков, унаследовавших разные родительские признаки. Это позволило ему установить количественные закономерности наследования признаков.

Скрещивание организмов называется гибридизацией, а потомки от скрещивания двух родительских особей с различными признаками — гибридами.

Для записи скрещиваний используется международная символика:

Р — родительские особи (от лат. parentes — родитель); f — женская особь; и — мужская особь; G — гаметы;

F — потомство (от лат. filiale — дочерний) с соответствующими индексами поколений: F b F 2 , F 3 и т. д;

значок «X» обозначает скрещивание.


Моногибридное скрещивание. Закон единообразия гибридов первого поколения. Скрещивание, при котором родительские организмы отличаются друг от друга по одной паре альтернативных признаков, называется моногибридным.

В одном из опытов Г. Мендель изучал наследование окраски семян гороха. Он скрещивал растения, выращенные из желтых семян, с растениями, выращенными из семян зеленого цвета. Чтобы предотвратить самоопыление, Г. Мендель у растений одного сорта гороха удалял в цветках тычинки, у другого — пестики и проводил гибридизацию путем искусственного опыления.

Результаты скрещивания были однозначны: у всех гибридных растений первого поколения семена оказались желтыми независимо от того, материнским или

отцовским было растение с такими семенами. Зеленая окраска семян у гибридов первого поколения не проявлялась (рис. 88):

Р: V желтые семена х d зеленые семена F{. все растения имеют желтые семена

Скрещивая растения, отличающиеся по другим парам альтернативных признаков, например по окраске цветков или форме плодов (см. рис. 87), Г. Мендель обнаружил, что во всех случаях у гибридов первого поколения проявлялся лишь один из двух альтернативных признаков. Явление преобладания одних признаков над другими было названо доминированием, а преобладающие признаки — доминантными. Признаки, которые не проявлялись у гибридов первого поколения, получили название рецессивных.

Открытая Г. Менделем закономерность впоследствии была названа законом единообразия гибридов первого поколения или первым законом Менделя.

Этот закон звучит следующим образом: при скрещивании особей чистых линий, отличающихся по одной паре альтернативных признаков, гибриды первого поколения будут единообразными по доминантному признаку.

Закон расщепления. Путем самоопыления гибридов первого поколения Г. Мендель получил второе поколение, в котором растений имели горошины

желтого цвета и — горошины зеленого цвета. Появление в потомстве особей, различающихся по альтернативным признакам, называется расщеплением. В данном случае наблюдалось расщепление 3: 1 (см. рис. 88).

Такое же расщепление было обнаружено и при исследовании других пар альтернативных признаков: во втором поколении у — растений проявлялись доми-

1 4 нантные признаки, ау | — рецессивные.

Следовательно, рецессивный признаку гибридов первого поколения не исчезал, а только был подавлен и вновь проявлялся во втором поколении. Это обобщение позднее было названо законом расщепления или вторым законом Менделя, который звучит так: при скрещивании гибридов первого поколения между собой во втором поколении наблюдается расщепление по альтернативным признакам в соотношении: 3 части особей с доминантным признаком к 1 части особей с рецессивным признаком.

Необходимо отметить, что идеального соотношения 3: 1 обычно не обнаруживалось ни в одном опыте. Например, изучая расщепление по окраске семян, Г. Мендель исследовал 8023 горошины и получил соотношение: 6022 желтые и 2001 зеленая, что очень близко к соотношению 3: 1. И только статистический анализ позволил установить характер расщепления.

Многочисленными исследованиями ряда ученых в последующие годы был установлен универсальный характер законов Менделя. Им подчиняются все живые организмы, в том числе человек, у которого изучено и описано много пар альтернативных признаков.

1. Что изучает генетика? Что такое наследственность и каково ее биологическое значение?

2. Объясните, каким образом гены определяют развитие признаков.

3. Охарактеризуйте основные методы исследований, используемые в генетике.

4. Что такое доминантный и рецессивный признаки?

5. Какие законы установил Г. Мендель на основе моногибридного скрещивания? Сформулируйте их.

6. Попробуйте на примере вашей семьи и семей близких родственников проанализировать наследование некоторых признаков человека. Это может быть, например, цвет волос или глаз, длина ресниц, толщина губ, наличие или отсутствие веснушек (или ямочки на подбородке), способность или неспособность сворачивать язык трубочкой и т. п. Попытайтесь выявить доминантные и рецессивные признаки. Каким образом это можно сделать?

7. Можно ли утверждать, что из пары альтернативных признаков доминантным всегда является тот, который проявляется у большинства особей того или иного вида? Почему?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах

Читайте также:
  1. II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  2. II. Основные принципы и правила служебного поведения государственных гражданских служащих Федеральной налоговой службы
  3. II. Принципы разработки учебно-методического комплекса дисциплины (УМКД)
  4. q]1:1: Закономерности формирования совокупного спроса и совокупного предложения на товары и факторы производства на мировом рынке являются объектом изучения
  5. R Принципы купирования пароксизмов мерцания и трепетания предсердий
  6. Авария, инцидент. Основные закономерности возникновения и развития аварий на опасных производственных объектах
  7. Амебиаз. Балантидиаз. Клиника, диагностика, осложнения, принципы терапии.

1. Гибридологический метод

2. Наследование при моногибридном скрещивании

3. Анализирующее скрещивание

4. Наследование при неполном доминировании

5. Отклонения от ожидаемого расщепления

6. Тетрадный анализ, или генетическое расщепление

История современной генетики начинается с устверждения теории гена в 1900г., когда Е.Чермак, К.Коренс и Г. де Фриз независимо друг от друга открыли законы наследования отдельных признаков, не предполагая, что эти законы были открыты Г.Менделем.

На протяжении столетий предшественники Менделя изучали наследование совокупности всех признаков у гибридного потомства. Г.Мендель положил в основу изучения наследования новые принципы.

Первая особенность метода Менделя состояла в получении в течение нескольких поколений константных форм, которые он в дальнейшем подвергал скрещиванию.

Второй особенностью метода Менделя является анализ наследования отдельных пар признаков в потомстве скрещиваемых растений одного вида гороха, отличающихся по одной, двум и трём парам контрастных, альтернативных признаков, например, цветки пурпурные и белые, форма семян гладкая и морщинистая и т.п. В каждом поколении вёлся учёт отдельно по каждой такой паре альтернативных признаков, без учёта других различий между скрещиваемыми растениями.

Третья особенность этого метода заключалась в использовании количественного учёта гибридных растений, различающихся по отдельным парам альтернативных признаков, в ряду последовательных поколений.

Четвёртой особенностью метода Менделя было применение индивидуального анализа потомства от каждого гибридного растения.

Перечисленные простые приёмы исследования составили принципиально новый гибридологический метод изучения наследования, открывший целую эпоху в изучении наследственности и изменчивости. Совокупность генетических методов изучения наследования называют генетическим анализом.

Моногибридное скрещивание . Моногибридным называют такое скрещивание, в котором родительские формы различаются по одной паре альтернативных, контрастных признаков.

Доминирование, закон единообразия гибридов первого поколения. Закон расщепления. Любое скрещивание начинается с выявления признака. Признак - это определенное отдельное качество организма, по которому одна его часть отличается от другой или одна особь от другой. Признаком в генетическом смысле можно назвать любую особенность, выявляемую при описании организма: высоту, вес, форму носа, цвет глаз, форму листьев, окраску цветка, размер молекулы белка или его электрофоретическую подвижность. Признаки должны проявляться постоянно. Чтобы убе­диться в их константности, Мендель на протя­жении двух лет предварительно проверял раз­личные формы гороха. Признаки должны быть контрастными. Мендель отобрал 7 признаков, каждый из которых имел по два контрастных проявления. Например, зрелые семена по мор­фологии были либо гладкими, либо морщини­стыми, по окраске - желтыми или зелеными, окраска цветка была белой или пурпурной.



После определения признаков можно при­ступать к скрещиваниям, в которых использу­ют генетические линии - родственные орга­низмы, воспроизводящие в ряду поколений одни и те же наследственно константные при­знаки. Потомство от скрещивания двух особей с различной наследственностью называют гиб­ридным, а отдельную особь - гибридом.

После того как Мендель скрестил формы гороха, различающиеся по 7 признакам, у гиб­ридов проявился, или доминировал, только один из пары родительских признаков. При­знак другого родителя (рецессивный) у гибридов первого поколения не проявлялся. Позднее это явление доминирования было названо пер­вым законом Менделя (законом единообразия гибридов первого поколения или законом до­минирования).



Мендель скрестил полученные гибриды между собой. Как он сам пишет, «в этом по­колении наряду с доминирующими признака­ми вновь появляются также рецессивные в их полном развитии и притом в ясно выраженном среднем отношении 3: 1, так что из каждых четырех растений этого поколения три полу­чают доминирующий и одно - рецессивный признак» [Мендель, 1923. С. 12]. Всего в дан­ном опыте было получено 7324 семени, из ко­торых гладких было 5474, а морщинистых - 1850, откуда выводится соотношение 2,96: 1. Данные этого опыта свидетельствуют о том, что рецессивный признак не теряется и в сле­дующем поколении он снова проявляется (выщепляется) в чистом виде. Г. де Фриз в 1900 г. назвал это явление законом расщепления, а позднее его назвали вторым законом Менделя.

Разные классы потомков (с доминантным и рецессивным проявлением) Мендель вновь самоопылил. Оказалось, что признаки с рецес­сивным проявлением сохраняются неизменны­ми в последующих поколениях после само­опыления. Если же самоопылить растения из доминирующего класса, то вновь будет рас­щепление, на этот раз в соотношении 2: 1.

Прежде чем перейти к изложению наследования признаков, необходимо сообщить о некоторых символах, принятых в генетике.

Скрещивание обозначают знаком умноже­ния - X. В схемах на первом месте принято ставить генотип женского пола. Пол принято обозначать следующими символами:

женский – ♀ (зеркало Венеры),

мужской – ♂ (щит и копьё Марса).

Родительские организмы, взятые в скрещи­вание, обозначают буквой P (от латинского Parento - родители). Гибридное поколение обо­значают буквой F (от латинского Filii - дети) с цифровым индексом, соответствующим по­рядковому номеру гибридного поколения [Лобашев, 1967. С. 105]. Доминирующий признак Мендель предложил обозначать заглавной буквой, а рецессивный - той же буквой, но строчной.

Для облегчения расчёта сочетаний разных типов гамет английский генетик Р.Пэннет предложил запись в виде решётки – таблицы с числом строк (столбцов) по числу типов гамет, образуемых скрещиваемыми особями (широко известна как решётка Пэннета), а на пересечении вписывают образующиеся сочетания гамет. Так, в скрещивании Аа X Аа будут следующие гаметы и их сочетания:

Гаметы А а
А АА Аа
а Аа аа

Скрещивание, выполненное Менделем, можно показать на следующей схеме:

P AA X aa

F 1 Aa X Aa

F 2 AA Aa Aa aa

с проявлением с проявлением

Доминантного рецессивного

признака признака

В F 2 можно выделить два типа расщепления: 3: 1 по внешнему проявлению и 1: 2: 1 по наследственным потенциям. Для «внешней» характеристики признака В.Иогансен в 1909 г. предложил термин «фенотип», а для характеристики истинно наследственных задатков – «генотип». Поэтому расщепление по генотипу в F 2 моногибридного скрещивания составляет ряд 1: 2: 1, а по фенотипу – 3: 1.

Константные формы АА и аа , которые в последующих поколениях не дают расщепления, У.Бэтсон в 1902 г. предложил называть гомозиготными, а формы Аа , дающие расщепление, - гетерозиготными.

Как мы видели, у гибридов F 1 рецессивная аллель а, хотя и не проявляется, но и не смешивается с доминантной аллелью А 1 , а в F 2 обе аллели вновь проявляются в чистом виде. Такое явление можно объяснить, лишь исходя из допущения, что гибрид F 1 Аа образует не гибридные, а «чистые гаметы», при этом указанные аллели оказываются в разных гаметах. Гаметы, несущие аллели А и а , образуются в равном числе; исходя из этого становится понятным расщепление по генотипу 1: 2: 1. Несмешивание аллелей каждой пары альтернативных признаков в гаметах гибридного организма называется правилом чистоты гамет, в основе которого лежат цитологические механизмы мейоза.

Анализирующее скрещивание. Чтобы проверить, является ли данный организм гомо- или гетерозиготным, можно, как предложил Мендель, скрестить его с ис­ходной гомозиготой по рецессивным аллелям. Такой тип скрещивания получил название ана­лизирующего.

Аа X аа АА X аа

1Аа: 1аа Аа

Если особь была гомозиготной по доминантно­му признаку, все потомки принадлежат к одно­му классу. Если в результате анализирующего скрещивания расщепление и по фенотипу, и по генотипу составляет 1: 1, это свидетельствует о гетерозиготности одного из родителей.

Неполное доминирование и кодоминирование. Кроме полного доминирования, описанно­го Менделем, найдены также неполное, или частичное, доминирование и кодоминирование. При неполном доминировании гетерозигота имеет фенотип, промежуточный меж­ду фенотипами гомозигот. При этом правило Менделя о единообразии фенотипа в F 1 соблю­дается. В F 2 и по фенотипу, и по генотипу рас­щепление выражается соотношением 1: 2: 1. Примером неполного доминирования может служить промежуточная розовая окраска цветка у гибридов ночной красавицы Mirabilis jalapa, полученных от скрещивания красноцветковой и белоцветковой форм.

Неполное доминирование оказалось широ­ко распространенным явлением и было отмече­но при изучении наследования окраски цветка у львиного зева, окраски оперения у андалуз­ских кур, шерсти у крупного рогатого скота и овец и др. [см. подробнее: Лобашев, 1967].

Кодоминирование – это явление, когда оба аллеля дают равноценный вклад в формирование фенотипа. Так, если материнский организм имеет группу крови А, а отцовский В, то у детей бывает группа крови АВ.

Полное доминирование Неполное доминирование Кодоминирование

Типы доминирования различных аллелей

Отклонения от ожидаемого расщепления. Мендель отмечал, что «в гибридах и их потомках в последующих поколениях не должно происходить заметного нарушения в плодовитости». В расщеплениях будут нарушения, если классы имеют разную жизне­способность. Случаи отклонений от ожидаемо­го соотношения 3: 1 довольно многочисленны.

Много десятилетий известно, что при скре­щивании желтых мышей между собой в потом­стве наблюдается расщепление по окраске на желтых и черных в соотношении 2: 1. Анало­гичное расщепление было обнаружено в скре­щиваниях лисиц платиновой окраски между собой, в потомстве от которых появлялись как платиновые, так и серебристо-черные лисицы. Детальный анализ этого явления показал, что лисицы платиновой окраски всегда гетерози­готны, а гомозиготы по доминантному аллелю этого гена гибнут на эмбриональной стадии, гомозиготы по рецессивному аллелю имеют серебристо-черную окраску.

У овец доминантный аллель, дающий ок­раску ширази (серый каракуль), летален в гомозиготе, в результате чего ягнята гибнут вско­ре после рождения, и расщепление также сме­щается в сторону 2: 1 (ширази - черные). Летальным в гомозиготе является также доми­нантный аллель, обусловливающий линейное расположение чешуи у карпа [Лобашев, 1967]. Множество таких мутаций известно у дрозофилы (N, Sb, D, Cy, L и др.). Во всех случаях получается расщепление 2: 1 вместо 3: 1. Это отклонение не только не свидетельствует об ошибочности законов Менделя, но дает дополнительные доказательства их справедливости. Однако на этих примерах видно, что для вы­явления одного из классов потомков требует­ся провести дополнительную работу.

Тетрадный анализ, или гаметическое расщепление. При развитии половых клеток в результате двух мейотических делений у моногибрида Aa , т.е. организма, гетерозиготного по одному гену, из одной диплоидной клетки возникают 4 клетки (клеточная тетрада): две клетки несут аллели А , а две другие – а. Именно механизм мейоза является тем биологическим процессом, который обеспечивает расщепление по типам гамет в отношении 2А: 2а или 1А: 1а . Следовательно, расщепление по типам гамет в случае одной аллельной пары будет 1: 1. Расщепление 3: 1, или 1: 2: 1 установлено на зиготах как следствие сочетания гамет в процессе оплодотворения.

При рассмотрении микроспорогенеза у растений можно было убедиться в том, что в результате двух мейотических делений образуется клеточная тетрада из 4-х микроспор, имеющих гаплоидный набор хромосом и расщепление в отношении 2А: 2а. У покрытосеменных каждую тетраду учесть невозможно, т.к. зрелые пыльцевые зерна из клеточной тетрады распадаются и не сохраняются вместе. У таких растений можно учесть расщепление только по совокупности всех пыльцевых зерен. У кукурузы известна одна пара аллелей гена, которая определяет крахмалистый или восковидный типы пыльцевых зерен. Если пыльцевые зерна гибридной кукурузы (Аа ) обработать йодом, то крахмалистые приобретают синюю окраску, и восковидные – красноватую, и их можно подсчитать. Это расщепление 1: 1.

Ещё в 20-х г. были найдены объекты (мхи), у которых удалось проанализировать расщепление в пределах одиночной тетрады. Данный метод, позволяющий устанавливать расщепление гамет после двух делений созревания (мейоза), был назван тетрадным анализом. Этот метод впервые позволил непосредственно доказать, что менделевское расщепление является результатом закономерного хода мейоза, что оно представляет не статистическую, а биологическую закономерность. Приведём пример тетрадного анализа при исследовании одной аллельной пары у дрожжей. У дрожжей рода Saccharomyces встречаются клетки, дающие красные и белые колонии. Эти альтернативные признаки определяются одной аллельной парой гена окраски А белый цвет, а – красный. При слиянии гаплоидных гамет образуется диплоидная зигота F 1 . Она вскоре приступает к мейозу, в результате чего в одном аске образуется тетрада гаплоидных спор. Разрезав аск и вынув каждую спору отдельно переносят их на субстрат, где они размножаются. Каждая из 4-х гаплоидных клеток начинает делиться и образуются 4 колонии. Две из них оказываются белыми и две красными, т.е. наблюдается расщепление, точно соответствующее 1А: 1а.

1. Что помешало предшественникам Менделя подойти к анализу наследственных признаков? В чём проявилась гениальность Менделя?

2. Какие основные законы Менделя Вам известны? В чём их сущность? Знаете ли Вы о вторичном их открытии?

3. Все ли случаи наследования признаков не противоречат законам Менделя, их дополняют? Какие это дополнения?

4. Что такое доминантный и рецессивный признак, гомо- и гетерозиготность, гено- и фенотип?

5. В чём заключается сущность закона чистоты гамет?

6. Какой вид наследственности называется промежуточным?

Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F 1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F 1 Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях - А и а. Такие альтернативные состояния гена называются аллелями.

Анализируя результаты моногибридных скрещиваний, Г. Мендель установил правило (иногда именуемое законом) чистоты гамет. Оно подразумевает, что любая гамета любого организма несет по одному аллелю каждого гена, аллели в них не перемешиваются. Это означает, что у особей генотипа АА формируются гаметы одного вида - А, у особей генотипа аа - также одного типа - а. Такие особи, образующие гаметы только одного сорта (по крайней мере по тому гену, который находится в центре внимания), являются гомозиготными (или гомозиготами). Таким образом, нетрудно убедиться, что чистые линии состоят из гомозиготных особей. Гибриды Рх генотипа Аа формируют гаметы двух сортов - А и а, каждый из которых «чист» в отношении аллеля А или а. Такие особи (или генотипы), образующие гаметы нескольких видов, называются гетерозиготными (или гетерозиготами). В основе закона единообразия гибридов первого поколения лежит механизм расхождения хромосом в мейозе. Каждый из аллелей лежит в своей хромосоме (или хроматиде), и при расхождении хромосом (в первом делении мейоза), а затем и хроматид (во втором делении мейоза) вместе с ними в гаплоидные клетки отходит по одному из соответствующих аллелей. Таким образом, закон единообразия гибридов первого поколения является следствием основополагающего правила чистоты гамет, которое определяет и другие законы наследования.

Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а - рецессивное. В этом заключается еще одно правило менделизма.- правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

Иногда у гетерозигот проявляются признаки обоих родителей - это отсутствие доминирования, или ко доминирование.

Закон расщепления в моногибридном скрещивании

Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 - с рецессивным проявлением признака.

Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа: 1/2 аа.

Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 - 3:1, 1:2:1, 2:1, а в анализирующем скрещивании - 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А - по гену А, по признаку В - по гену В). При скрещивании гибридов F 1 , полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, - в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких. В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента - у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента - у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще - глаза бесцветные (белые).

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Условия выполнения законов наследования

Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F 2 1/4 АА: 2/4 Аа: 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа: 1/3 аа.

Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

Генетика - наука, изучающая наследственность и изменчивость организмов.
Наследственность - способность организмов передавать из поколения в поколение свои признаки (особенности строения, функций, развития).
Изменчивость - способность организмов приобретать новые признаки. Наследственность и изменчивость - два противоположных, но взаимосвязанных свойства организма.

Наследственность

Основные понятия
Ген и аллели. Единицей наследственной информации является ген.
Ген (с точки зрения генетики) - участок хромосомы, определяющий развитие у организма одного или нескольких признаков.
Аллели - различные состояния одного и того же гена, располагающиеся в определённом локусе (участке) гомологичных хромосом и определяющие развитие одного какого-то признака. Гомологичные хромосомы имеются только в клетках, содержащих диплоидный набор хромосом. Их нет в половых клетках (гаметах) эукариот и у прокариот.

Признак (фен) - некоторое качество или свойство, по которому можно отличить один организм от другого.
Доминирование - явление преобладания у гибрида признака одного из родителей.
Доминантный признак - признак, проявляющийся в первом поколении гибридов.
Рецессивный признак - признак, внешне исчезающий в первом поколении гибридов.

Доминантные и рецессивные признаки у человека

Признаки
доминантные рецессивные
Карликовость Нормальный рост
Полидактилия (многопалость) Норма
Курчавые волосы Прямые волосы
Не рыжие волосы Рыжие волосы
Раннее облысение Норма
Длинные ресницы Короткие ресницы
Крупные глаза Маленькие глаза
Карие глаза Голубые или серые глаза
Близорукость Норма
Сумеречное зрение (куриная слепота) Норма
Веснушки на лице Отсутствие веснушек
Нормальная свёртываемость крови Слабая свёртываемость крови (гемофилия)
Цветовое зрение Отсутствие цветового зрения (дальтонизм)

Доминантный аллель - аллель, определяющий доминантный признак. Обозначается латинской прописной буквой: А, B, С, … .
Рецессивный аллель - аллель, определяющий рецессивный признак. Обозначается латинской строчной буквой: а, b, с, … .
Доминантный аллель обеспечивает развитие признака как в гомо-, так и в гетерозиготном состоянии, рецессивный аллель проявляется только в гомозиготном состоянии.
Гомозигота и гетерозигота. Организмы (зиготы) могут быть гомозиготными и гетерозиготными.
Гомозиготные организмы имеют в своем генотипе два одинаковых аллеля - оба доминантные или оба рецессивные (АА или аа).
Гетерозиготные организмы имеют один из аллелей в доминантной форме, а другой - в рецессивной (Аа).
Гомозиготные особи не дают расщепления в следующем поколении, а гетерозиготные дают расщепление.
Разные аллельные формы генов возникают в результате мутаций. Ген может мутировать неоднократно, образуя много аллелей.
Множественный аллелизм - явление существования более двух альтернативных аллельных форм гена, имеющих различные проявления в фенотипе. Два и более состояний гена возникают в результате мутаций. Ряд мутаций вызывает появление серии аллелей (А, а1, а2, …, аn и т. д.), которые находятся в разных доминантно-рецессивных отношениях друг к другу.
Генотип - совокупность всех генов организма.
Фенотип - совокупность всех признаков организма. К ним относятся морфологические (внешние) признаки (цвет глаз, окраска цветков), биохимические (форма молекулы структурного белка или фермента), гистологические (форма и размер клеток), анатомические и т. д. С другой стороны, признаки можно разделить на качественные (цвет глаз) и количественные (масса тела). Фенотип зависит от генотипа и условий внешней среды. Он развивается в результате взаимодействия генотипа и условий внешней среды. Последние в меньшей степени влияют на качественные признаки и в большей степени - на количественные.
Скрещивание (гибридизация). Одним из основных методов генетики является скрещивание, или гибридизация.
Гибридологический метод - скрещивание (гибридизация) организмов, отличающихся друг от друга по одному или нескольким признакам.
Гибриды - потомки от скрещиваний организмов, отличающихся друг от друга по одному или нескольким признакам.
В зависимости от числа признаков, по которым различаются между собой родители, выделяют разные виды скрещивания.
Моногибридное скрещивание - скрещивание, при котором родители различаются только по одному признаку.
Дигибридное скрещивание - скрещивание, при котором родители различаются по двум признакам.
Полигибридное скрещивание - скрещивание, при котором родители различаются по нескольким признакам.
Для записи результатов скрещиваний используются следующие общепринятые обозначения:
Р - родители (от лат. parental - родитель);
F - потомство (от лат. filial - потомство): F 1 - гибриды первого поколения - прямые потомки родителей Р; F 2 - гибриды второго поколения - потомки от скрещивания между собой гибридов F 1 и т. д.
♂ - мужская особь (щит и копьё - знак Марса);
♀ - женская особь (зеркало с ручкой - знак Венеры);
X - значок скрещивания;
: - расщепление гибридов, разделяет цифровые соотношения отличающихся (по фенотипу или генотипу) классов потомков.
Гибридологический метод был разработан австрийским естествоиспытателем Г. Менделем (1865). Он использовал самоопыляющиеся растения гороха садового. Мендель провёл скрещивание чистых линий (гомозиготных особей), отличающихся друг от друга по одному, двум и более признакам. Им были получены гибриды первого, второго и т. д. поколений. Полученные данные Мендель обработал математически. Полученные результаты были сформулированы в виде законов наследственности.

Законы Г. Менделя

Первый закон Менделя. Г. Мендель скрестил растения гороха с жёлтыми семенами и растения гороха с зелёными семенами. И те и другие были чистыми линиями, то есть гомозиготами.

Первый закон Менделя - закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).
Второй закон Менделя. После этого Г. Мендель скрестил между собой гибридов первого поколения.

Второй закон Менделя - закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определённом числовом соотношении: особи с рецессивным проявлением признака составляют 1/4 часть от общего числа потомков.

Расщепление - явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный. В случае моногибридного скрещивания это соотношение выглядит следующим образом: 1АА:2Аа:1аа, то есть 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании). В случае дигибридного скрещивания - 9:3:3:1 или (3:1) 2 . При полигибридном - (3:1) n .
Неполное доминирование. Доминантный ген не всегда полностью подавляет рецессивный ген. Такое явление называется неполным доминированием . Примером неполного доминирования является наследование окраски цветков ночной красавицы.

Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении состоят в расхождении гомологичных хромосом и образовании гаплоидных половых клеток в мейозе.
Гипотеза (закон) чистоты гамет гласит: 1) при образовании половых клеток в каждую гамету попадает только один аллель из аллельной пары, то есть гаметы генетически чисты; 2) у гибридного организма гены не гибридизуются (не смешиваются) и находятся в чистом аллельном состоянии.
Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.
Анализ потомства. Анализирующее скрещивание позволяет установить, гомозиготен или гетерозиготен организм по доминантному гену. Для этого скрещивают особь, генотип которой следует определить, с особью, гомозиготной по рецессивному гену. Часто скрещивают одного из родителей с одним из потомков. Такое скрещивание называется возвратным .
В случае гомозиготности доминантной особи расщепления не произойдёт:

В случае гетерозиготности доминантной особи произойдёт расщепление:

Третий закон Менделя. Г. Мендель провёл дигибридное скрещивание растений гороха с жёлтыми и гладкими семенами и растений гороха с зелёными и морщинистыми семенами (и те и другие – чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведёт себя так же, как при моногибридном скрещивании (расщепляется 3:1), то есть независимо от другой пары признаков.

Третий закон Менделя - закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идёт независимо от других признаков.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

Сцепленное наследование. Нарушение сцепления

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.
Закономерности сцепленного наследования генов были изучены Т. Морганом и его учениками в начале 20-х гг. XX в. Объектом их исследований являлась плодовая мушка дрозофила (срок её жизни невелик, и за год можно получить несколько десятков поколений, её кариотип составляют всего четыре пары хромосом).
Закон Моргана: гены, локализованные в одной хромосоме, наследуются преимущественно вместе.
Сцепленные гены - гены, лежащие в одной хромосоме.
Группа сцепления - все гены одной хромосомы.
В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления - кроссинговер (перекрёст хромосом) - обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации . Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт - определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Генетика пола

Аутосомы - хромосомы, одинаковые у обоих полов.
Половые хромосомы (гетерохромосомы) - хромосомы, по которым мужской и женский пол отличаются друг от друга.
В клетке человека содержится 46 хромосом, или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Существует 5 типов хромосомного определения пола.

Типы хромосомного определения пола

Тип Примеры
♀ XX, ♂ ХY Характерен для млекопитающих (в том числе и для человека), червей, ракообразных, большинства насекомых (в том числе для дрозофил), большинства земноводных, некоторых рыб
♀ ХY, ♂ XX Характерен для птиц, пресмыкающихся, некоторых земноводных и рыб, некоторых насекомых (чешуекрылые)
♀ XX, ♂ Х0 Встречается у некоторых насекомых (прямокрылые); 0 обозначает отсутствие хромосом
♀ Х0, ♂ XX Встречается у некоторых насекомых (равнокрылые)
гапло-диплоидный тип (♀ 2n, ♂ n) Встречается, например, у пчёл и муравьёв: самцы развиваются из неоплодотворённых гаплоидных яйцеклеток (партеногенез), самки - из оплодотворённых диплоидных.

Наследование, сцепленное с полом - наследование признаков, гены которых находятся в Х- и Y-хромосомах. В половых хромосомах могут находиться гены, не имеющие отношения к развитию половых признаков.
При сочетании XY большинство генов, находящихся в X-хромосоме, не имеют аллельной пары в Y-хромосоме. Также гены, расположенные в Y-хромосоме, не имеют аллелей в X-хромосоме. Такие организмы называются гемизиготными . В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свёртываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.

Генетика крови

По системе АВ0 у людей 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена IА, IВ, I0. Два первых кодоминантны по отношению друг к другу, и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии - 4.

I группа 0 I 0 I 0 гомозигота
II группа А I А I А гомозигота
I А I 0 гетерозигота
III группа В I В I В гомозигота
I В I 0 гетерозигота
IV группа АВ I А I В гетерозигота

У разных народов соотношение групп крови в популяции различно.

Распределение групп крови по системе АВ0 у разных народов,%

Кроме того, кровь разных людей может отличаться резус-фактором. Кровь может иметь положительный резус-фактор (Rh +) или отрицательный резус-фактор (Rh -). У разных народов это соотношение различается.

Распределение резус-фактора у разных народов,%

Народность Резус-положительные Резус-отрицательные
Австралийские аборигены 100 0
Американские индейцы 90–98 2–10
Арабы 72 28
Баски 64 36
Китайцы 98–100 0–2
Мексиканцы 100 0
Норвежцы 85 15
Русские 86 14
Эскимосы 99–100 0–1
Японцы 99–100 0–1

Резус-фактор крови определяет ген R. R + дает информацию о выработке белка (резус-положительный белок), а ген R – не даёт. Первый ген доминирует над вторым. Если Rh + кровь перелить человеку с Rh – кровью, то у него образуются специфические агглютинины, и повторное введение такой крови вызовет агглютинацию. Когда у Rh – женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт. Первая беременность, как правило, заканчивается благополучно, а повторная - заболеванием ребёнка или мертворождением.

Взаимодействие генов

Генотип - это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки).
Взаимодействовать могут как аллельные гены, так и неаллельные.
Взаимодействие аллельных генов: полное доминирование, неполное доминирование, кодоминирование.
Полное доминирование - явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.
Неполное доминирование - явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.
Кодоминирование (независимое проявление) - явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и B, являются кодоминантными по отношению друг к другу, и оба доминантны по отношению к гену, определяющему группу крови 0.
Взаимодействие неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.
Кооперация - явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет своё собственное фенотипическое проявление, происходит формирование нового признака.
Комплементарность - явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.
Эпистаз - явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).
Полимерия - явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).
В противоположность полимерии наблюдается такое явление, как плейотропия - множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Хромосомная теория наследственности

Основные положения хромосомной теории наследственности:

  • ведущую роль в наследственности играют хромосомы;
  • гены расположены в хромосоме в определённой линейной последовательности;
  • каждый ген расположен в определённом месте (локусе) хромосомы; аллельные гены занимают одинаковые локусы в гомологичных хромосомах;
  • гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;
  • между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);
  • частота кроссинговера между генами пропорциональна расстоянию между ними.

Нехромосомное наследование

Согласно хромосомной теории наследственности ведущую роль в наследственности играют ДНК хромосом. Однако ДНК содержатся также в митохондриях, хлоропластах и в цитоплазме. Нехромосомные ДНК называются плазмидами . Клетки не имеют специальных механизмов равномерного распределения плазмид в процессе деления, поэтому одна дочерняя клетка может получить одну генетическую информацию, а вторая - совершенно другую. Наследование генов, содержащихся в плазмидах, не подчиняется менделевским закономерностям наследования, а их роль в формировании генотипа ещё мало изучена.

Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…

Мендель , проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

Основные положения гибридологического метода

  • Для скрещивания берутся организмы, предки которых в ряду поколений не давали расщепления по избранным признакам, то есть чистые линии.
  • Организмы отличаются по одной или двум парам альтернативных признаков.
  • Проводится индивидуальный анализ потомства каждого скрещивания.
  • Используется статистическая обработка результатов.

Первый закон Г. Менделя

При скрещивании двух гомозиготных особей, отличающихся друг от друга одной парой альтернативных признаков, всё потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Второй закон Г. Менделя

При скрещивании гибридов первого поколения (двух гетерозиготных особей) во втором происходит расщепление 3: 1. Наряду с доминантным появляется и рецессивный признак.

Анализирующее скрещивание — скрещивание, при котором особь с неизвестным генотипом, который нужно установить (АА или Аа), скрещивается с рецессивной гомозиготой (аа). Если всё потомство от итого скрещивания будет однообразным, исследуемый организм имеет генотип АА. Если в потомстве Судет наблюдаться расщепление по фенотипу 1: 1, исследуемый организм - гетерозиготный Аа.

Третий закон Г. Менделя

При скрещивании гомозиготных особей, отличающихся двумя парами альтернативных признаков или более, каждый признак наследуется независимо от других, комбинируясь во всех возможных сочетаниях.

В опытах Мендель использовал разные способы скрещивания : моногибридное, дигибридное и полигибридное . При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования.

Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3:1 по каждой паре признаков. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности.

ТАБЛИЦА: все закономерности наследования

Это конспект по биологии для 10-11 классов по теме «Закономерности наследственности. Законы Моргана» . Выберите дальнейшее действие: