Красные звезды названия окружающий мир 3. Белые звезды: названия, описание, характеристики

Мы никогда не задумываемся, что возможно есть еще какая-то жизнь кроме нашей планеты, кроме нашей Солнечной системы. Возможно на какой-то из планет вращающихся вокруг голубой или белой или красной, а может желтой звезды есть жизнь. Возможно есть еще одна такая же планета земля, на которой живут такие же люди, но мы об этом до сих пор ничего не знаем. Нашими спутниками, телескопами обнаружено ряд планет, на которых возможно есть жизнь, но до этих планет десятки тысяч и даже миллионов световых лет.

Голубые отставшие звезды – звезды голубого цвета

Звезды, находящиеся в звездных скоплениях шарового типа, температура у которых выше температуры обычных звезд, а для спектра характерно существенное смещение к синей области, чем у звезд скопления с аналогичной светимостью, получили название голубые звезды отставшие. Это признак позволяет им выделяться относительно других звезд этого скопления на диаграмме Герцшпрунга-Рассела. Существование таких звезд опровергает все теории эволюции звезд, суть которой заключается в том, что для звезд, которые возникли в один и тот же промежуток времени, предполагается размещение в четко определенной области диаграммы Герцшпрунга-Рассела. При этом единственным фактором, который влияет на точное местоположение звезды, является ее начальная масса. Частое появление голубых отставших звезд вне пределов вышеупомянутой кривой, может стать подтверждением существования такого понятия, как аномальная звездная эволюция.

Специалисты, пытающиеся объяснить природу их возникновения, выдвинули несколько теорий. Наиболее вероятная из них указывает о том, что данные звезды голубого цвета в прошлом были двойными, после чего у них начал происходить или происходит сейчас процесс слияния. Итогом слияния двух звезд становится возникновение новой звезды, имеющей гораздо большую массу, яркость и температуру, чем звезды такого же возраста.

Если верность этой теории удастся каким-то образом доказать, теория звездной эволюции лишилась бы проблем в виде голубых отставших. В составе получившейся звезды имелось бы большее количество водорода, который вел бы себя аналогично молодой звезде. Существуют факты, подтверждающие такую теорию. Наблюдения показали, что чаще всего отставшие звезды встречаются в центральных регионах шаровых скоплений. В результате преобладающего там числа звезд единичного объема, близкие прохождения или же столкновения становятся более вероятными.

Для проверки данной гипотезы необходимо заняться изучением пульсации голубых отставших, т.к. между астросейсмологическими свойствами слившихся звезд и нормально пульсирующих переменных, могут быть некоторые отличия. Стоит отметить, что измерять пульсации достаточно тяжело. На этот процесс также негативно переполненность звездного неба, малые колебания пульсаций голубых отставших, а также редкость их переменных.

Один из примеров слияния можно было наблюдать в августе 2008 года, тогда такое происшествие коснулось объекта V1309, яркость которого после обнаружения возросла несколько десятков тысяч раз, а по прошествии нескольких месяцев вернулась к первоначальному значению. В результате 6-летних наблюдений, ученые пришли к выводу, что данный объект является двумя звездами, период обращения которых друг вокруг друга составляет 1,4 дня. Эти факты натолкнули ученых на мысль, что в августе 2008 года происходил процесс слияния этих двух звезд.

Для голубых отставших характерным является высокий вращательный момент. К примеру, скорость вращения звезды, которая располагается в середине скопления 47 Тукана, в 75 раз превышает скорость вращения Солнца. Согласно гипотезе, их масса в 2-3 раза превышает массу иных звезд, которые располагаются в скоплении. Также при помощи исследований было установлено, что если звезды голубого цвета близко располагаются к каким либо другим звездам, то у последних будет процентное содержание кислорода и углерода ниже, чем у соседей. Предположительно, звезды перетягивают данные вещества с других, движущихся по их орбите звезд, в результате чего возрастает их яркость и температура. У «обворованных» звезд обнаруживаются места, где произошел процесс превращения исходного углерода в другие элементы.

Названия голубых звезд – примеры

Ригель, Гамма Парусов, Альфа Жирафа, Дзета Ориона, Тау Большого Пса, Дзета Кормы

Белые звезды – звезды белого цвета

Фридрихом Бесселем, который руководил Кенигсбергской обсерваторией, в 1844 году было сделано интересно открытие. Ученый заметил малейшее отклонение наиболее яркой звезды неба – Сириуса, от своей траектории по небосводу. Астроном предположил наличие у Сириуса спутника, а также рассчитал примерный период вращения звезд вокруг их центра масс, который составил около пятидесяти лет. Бессель не нашел должной поддержки от других ученых, т.к. спутник никто не смог обнаружить, хотя по своей массе он должен был быть сопоставим с Сириусом.

И только через 18 лет Альваном Грэхэмом Кларком, который занимался тестированием наилучшего телескопа тех времен, рядом с Сириусом была обнаружена тусклая белая звезда, которая и оказалась его спутником, получившим название Сириус В.

Поверхность этой звезды белого цвета разогрета до 25 тыс. Кельвинов, а ее радиус маленький. Учитывая это, ученые сделали вывод о высокой плотности спутника (на уровне 106 г/см 3 , при этом плотность самого Сириуса приблизительно составляет 0,25 г/см 3 , а Солнца – 1,4 г/см 3). Через 55 лет (в 1917 году) был открыт еще один белый карлик, получивший название в честь ученого, обнаружившего его – звезда ван Маанена, которая находится в созвездии Рыб.

Названия белых звезд – примеры

Вега в созвездии Лиры, Альтаир в созвездии Орла, (видны летом и осенью), Сириус, Кастор.

Желтые звезды – звезды желтого цвета

Желтыми карликами принято называть небольшие звезды главной последовательности, масса которых находится в пределах массы Солнца (0,8-1,4). Если судить по названию, то такие звезды имеют свечение желтого цвета, которое выделяется во время осуществления термоядерного процесса синтеза из водорода гелия.

Поверхность таких звезд разогревается до температуры в 5-6 тыс. Кельвинов, а их спектральные классы находятся в пределах между G0V и G9V. Живет желтый карлик примерно 10 млрд. лет. Сгорание водорода в звезде становится причиной ее многократного увеличения в размерах и превращения в красного гиганта. Одним из примеров красного гиганта является Альдебаран. Такие звезды могут образовывать планетарные туманности, избавляясь от внешних слоев газа. При этом осуществляется превращение ядра в белого карлика, который обладает большой плотностью.

Если брать в расчет диаграмму Герцшпрунга-Рассела, то на ней желтые звезды находятся в центральной части главной последовательности. Поскольку Солнце можно назвать типичным желтым карликом, его модель вполне годится для рассмотрения общей модели желтых карликов. Но есть и другие характерные желтые звезды на небе, названия которых – Альхита, Дабих, Толиман, Хара и т.п. данные звезды не обладают высокой яркостью. К примеру, тот же Толиман, который, если не учитывать Проксима Центавру, ближе всех располагается к Солнцу, имеет 0-ю величину, но в то же время его яркость наивысшая среди всех желтых карликов. Располагается данная звезда в созвездии Центавра, также она является звеном сложной системы, в состав которой входят 6 звезд. Спектральный класс Толимана – G. А вот Дабих, находящийся в 350 световых годах от нас, относится к спектральному классу F. Но ее высокая яркость обусловлена наличием рядом звезды, относящейся к спектральному классу – А0.

Кроме Толимана, спектральный класс G имеет HD82943, которая расположилась на главной последовательности. Данная звезда, благодаря схожему с Солнцем химическому составу и температуре, также имеет две планеты больших размеров. Однако форма орбит данных планет далеко не круговая, поэтому относительно часто происходят их сближения с HD82943. В настоящее время астрономы смогли доказать, что раньше данная звезда имела гораздо большее число планет, но со временем она их все поглотила.

Названия желтых звезд – примеры

Толиман, звезда HD 82943, Хара, Дабих, Альхита

Красные звезды – звезды красного цвета

Если Вам хотя бы раз в жизни доводилось видеть в объективе своего телескопа красные звезды на небе, которые горели на черном фоне, то воспоминание данного момента поможет более четко представить то, о чем будет написано в этой статье. Если же Вашему взору ни разу не представлялись подобные звезды, в следующий раз обязательно попробуйте их отыскать.

Если взяться составлять список наиболее ярких красных звезд небосвода, которые можно с легкостью найти даже при помощи любительского телескопа, то можно обнаружить, что все они являются углеродными. Первые красные звезды были открыты еще в 1868 году. Температура таких красных гигантов низкая, кроме того, их внешние слои заполнены огромным количеством углерода. Если ранее подобные звезды составляли два спектральных класса – R и N, то сейчас ученые определили их в один общий класс – С. У каждого спектрального класса существуют подклассы – от 9 до 0. При этом класс С0 обозначает, что звезда имеет большую температуру, но менее красная, чем звезды класса С9. Также важным является то, что все звезды, в составе которых преобладает углерод, по своей сути переменные: долгопериодические, полуправильные или же неправильные.

Кроме того, в такой список попали и две звезды, именуемые красными полуправильными переменными, наиболее известная из которых – m Цефея. Ее необычным красным цветом заинтересовался еще Вильям Гершель, который окрестил ее «гранатовой». Для таких звезд характерно неправильное изменение светимости, которое может длиться от пары десятков до нескольких сотен дней. Такие переменные звезды относятся к классу М (звезды холодные, температура поверхности которых от 2400 до 3800 К).

Учитывая тот факт, что все звезды из рейтинга – переменные, необходимо внести определенную ясность в обозначения. Общепринято, что красные звезды имеют название, которое состоит из двух составных частей – буквы латинского алфавита и имени созвездия переменной (к примеру, Т Зайца). Первой переменной, которую открыли в данном созвездии, присваивается буква R и так далее, до буквы Z. Если же таких переменных много, для них предусматривается двойная комбинация латинских букв – от RR до ZZ. Такой способ позволяет «назвать» 334 объекта. Кроме того, можно звезды обозначать и при помощи буквы V в сочетании с порядковым номером (V228 Лебедя). Под обозначение переменных отведена первая колонка рейтинга.

Две следующих колонки в таблице обозначают месторасположение звезд в период 2000.0 года. В результате повышенной популярности атласа «Uranometria 2000.0» среди любителей астрономии, последняя колонка рейтинга отображает номер поисковой карты для каждой звезды, которая есть в рейтинге. При этом первая цифра является отображением номера тома, а вторая – порядковый номер карты.

Также в рейтинге отображаются максимальные и минимальные значения блеска звездных величин. Стоит помнить, что большая насыщенность красного цвета наблюдается у звезд, яркость которых минимальна. Для звезд, период переменности которых известен, он отображается в виде количества суток, а вот объекты, которые правильного периода не имеют, отображаются в виде Irr.

Для поиска углеродной звезды не нужна большая сноровка, достаточно, чтобы возможностей Вашего телескопа хватило, чтобы ее увидеть. Даже, если ее размеры небольшие, ее ярко выраженный красный цвет должен привлечь Ваше внимание. Поэтому не стоит расстраиваться, если не получается сразу их обнаружить. Достаточно воспользоваться атласом, чтобы найти близкорасположенную яркую звезду, и затем уже, двигаться от нее к красной.

Разные наблюдатели по-разному видят углеродные звезды. Некоторым они напоминают рубины или же горящий вдалеке уголек. Другие же видят в таких звездах малиновые или же кроваво-красные оттенки. Для начала в рейтинге есть список из шести наиболее ярких красных звезд, найдя и которые, Вы сможете вдоволь насладиться их красотой.

Названия красных звезд – примеры

Различия звезд по цвету

Существует огромное разнообразие звезд с непередаваемыми цветовыми оттенками. В результате этого даже одно созвездие получило название «Шкатулка с драгоценностями», основу которого составляют голубые и сапфировые звезды, а в самом его центре расположилась ярко светящая оранжевая звезда. Если рассматривать Солнце, то оно имеет бледно-желтый цвет.

Прямым фактором, влияющим на различие звезд по цвету, является температура их поверхности. Объясняется это просто. Свет по своей природе является излучением в виде волн. Длина волны – это расстояние между ее гребнями, является очень маленькой. Чтобы ее себе представить, нужно 1см разделить на 100 тыс. одинаковых частей. Несколько вот таких частичек и будут составлять длину волны света.

Учитывая, что это число получается достаточно маленьким, каждое, даже самое незначительное, его изменение станет причиной, по которой картинка, наблюдаемая нами, поменяется. Ведь наше зрение разную длину световых волн воспринимает в качестве разных цветов. К примеру, синий цвет имеют волны, длина которых в 1,5 раза меньше, чем у красных.

Также практически каждый из нас знает, что температура может оказывать самое прямое влияние на цвет тел. Для примера можно взять любой металлический предмет и положить его на огонь. Во время нагревания он станет красным. Если бы температура огня существенно повышалась, менялся бы и цвет предмета – с красного на оранжевый, с оранжевого на желтый, с желтого на белый, и, наконец, с белого на сине-белый.

Поскольку Солнце имеет температуру поверхности в районе 5,5 тыс. 0 С, то оно является характерным примером желтых звезд. А вот наиболее горячие голубые звезды могут разогревать и до 33 тыс. градусов.

Цвет и температура были связаны учеными при помощи физических законов. Чем температура тела прямо пропорциональна его излучению и обратно пропорциональна длине волн. Волны синего цвета имеют более короткие длины волн в сравнение с красным. Раскаленные газы излучают фотоны, энергия которых прямо пропорциональна температуре и обратно пропорциональна длине волны. Именно поэтому для наиболее горячих звезд характерным является сине-голубой диапазон излучения.

Поскольку ядерное топливо на звездах не безгранично, оно имеет свойство расходоваться, что приводит к остыванию звезд. Поэтому звезды среднего возраста имеют желтый цвет, а старые звезды мы видим красными.

В результате того что Солнце находится очень близко к нашей планете, можно с точностью описать его цвет. А вот для звезд, которые находятся в миллионе световых лет от нас, задача усложняется. Именно для этого используется прибор, получивший название спектрограф. Сквозь него ученые пропускаю свет, излучаемый звездами, в результате чего можно можно спектрально проанализировать практически любую звезду.

Кроме того, при помощи цвета звезды, можно определить ее возраст, т.к. математические формулы позволяют использовать спектральный анализ для определения температуры звезды, по которой легко вычислить ее возраст.

Видео тайны звезд смотреть онлайн

Если внимательно присмотреться к ночному небу, легко заметить, что звезды, глядящие на нас, различаются по цвету. Голубоватые, белые, красные, они светят ровно или мерцают, подобно елочной гирлянде. В телескоп различия в цвете становятся более очевидными. Причина, приведшая к такому разнообразию, кроется в температуре фотосферы. И, вопреки логичному предположению, самыми горячими являются не красные, а голубые, бело-голубые и белые звезды. Но обо всем по порядку.

Спектральная классификация

Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело - цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

Один Бритый Англичанин Финики Жевал Как Морковь

Основных спектральных классов семь: O—B—A—F—G—K—M. Эта последовательность отражает постепенное снижение температуры (от О к М). Для ее запоминания существуют специальные мнемонические формулы. На русском языке одна из них звучит так: «Один Бритый Англичанин Финики Жевал Как Морковь». К этим классам добавляются еще два. Буквами C и S обозначаются холодные светила с полосами окислов металла в спектре. Рассмотрим звездные классы подробнее:

  • Класс О характеризуется самой высокой температурой поверхности (от 30 до 60 тысяч Кельвинов). Звезды такого типа превышают Солнце по массе в 60, а по радиусу — в 15 раз. Их видимый цвет — голубой. По светимости они опережают нашу звезду более чем в миллион раз. Голубая звезда HD93129A, относящаяся к этому классу, характеризуется одним из самых больших показателей светимости среди известных космических тел. По этому показателю она опережает Солнце в 5 миллионов раз. Голубая звезда располагается на расстоянии в 7,5 тысяч световых лет от нас.
  • Класс В обладает температурой в 10-30 тысяч Кельвинов, массой, в 18 раз превышающей аналогичный параметр Солнца. Это бело-голубые и белые звезды. Их радиус больше, чем у Солнца, в 7 раз.
  • Класс А характеризуется температурой в 7,5-10 тысяч Кельвинов, радиусом и массой, превышающими в 2,1 и 3,1 раз соответственно аналогичные параметры Солнца. Это белые звезды.
  • Класс F: температура 6000-7500 К. Масса больше солнечной в 1,7 раз, радиус — в 1,3. С Земли такие звезды выглядят также белыми, их истинный цвет — желтовато-белый.
  • Класс G: температура 5-6 тысяч Кельвинов. К этому классу относится Солнце. Видимый и истинный цвет таких звезд — желтый.
  • Класс К: температура 3500-5000 К. Радиус и масса меньше солнечных, составляют 0,9 и 0,8 от соответствующих параметров светила. Видимый с Земли цвет этих звезд - желтовато-оранжевый.
  • Класс М: температура 2-3,5 тысячи Кельвинов. Масса и радиус — 0,3 и 0,4 от аналогичных параметров Солнца. С поверхности нашей планеты они выглядят красно-оранжевыми. К классу М принадлежат Бета Андромеды и Альфа Лисички. Яркая красная звезда, знакомая многим, — это Бетельгейзе (альфа Ориона). Лучше всего искать ее на небе зимой. Красная звезда расположена выше и чуть левее

Каждый класс делится на подклассы от 0 до 9, то есть от самых горячих до самых холодных. Номера звезд обозначают принадлежность к определенному спектральному типу и степень нагрева фотосферы по сравнению с другими светилами в группе. Например, Солнце относится к классу G2.

Визуальные белые

Таким образом, классы звезд с B по F с Земли могут выглядеть белыми. И только объекты, относящиеся к А-типу, имеют такую окраску на самом деле. Так, звезда Саиф (созвездие Орион) и Алголь (бета Персея) наблюдателю, не вооруженному телескопом, покажутся белыми. Они относятся к спектральному классу B. Их истинный цвет - бело-голубой. Также белыми кажутся Мифрак и Процион, самые яркие звезды в небесных рисунках Персей и Малый Пес. Однако их истинный цвет ближе к желтому (класс F).

Почему звезды белые для земного наблюдателя? Цвет искажается из-за огромного расстояния, отделяющего нашу планету от подобных объектов, а также объемных облаков пыли и газа, нередко встречающихся в космосе.

Класс А

Белые звезды характеризуются не столь высокой температурой, как представители класса О и В. Их фотосфера нагревается до 7,5-10 тысяч Кельвинов. Звезды спектрального класса А значительно крупнее Солнца. Их светимость также больше — примерно в 80 раз.

В спектрах А-звезд сильно выражены линии водорода серии Бальмера. Линии прочих элементов заметно слабее, однако они становятся более существенными по мере продвижения от подкласса А0 к А9. Для гигантов и сверхгигантов, относящихся к спектральному классу А, характерны чуть менее выраженные линии водорода, чем для звезд главной последовательности. В случае этих светил более заметными становятся линии тяжелых металлов.

К спектральному классу А относится немало пекулярных звезд. Таким термином обозначают светила, обладающие заметными особенностями в спектре и физических параметрах, что затрудняет их классификацию. Например, довольно редкие звезды типа лямбды Волопаса характеризуются недостатком тяжелых металлов и очень медленным вращением. В число пекулярных светил входят и белые карлики.

Классу А принадлежат такие яркие объекты ночного неба, как Сириус, Менкалинан, Алиот, Кастор и другие. Познакомимся с ними поближе.

Альфа Большого Пса

Сириус — самая яркая, хотя и не ближайшая, звезда на небе. Расстояние до него — 8,6 световых года. Для земного наблюдателя он кажется столь ярким потому, что имеет внушительные размеры и все-таки удален не так значительно, как многие другие крупные и яркие объекты. Ближайшая звезда к Солнцу — это Сириус в этом списке располагается на пятом месте.

Относится он к и представляет собой систему из двух компонентов. Сириус А и Сириус В разделены расстоянием в 20 астрономических единиц и вращаются с периодом чуть меньше 50 лет. Первый компонент системы — звезда главной последовательности, принадлежит спектральному классу А1. Его масса в два раза превышает солнечную, а радиус — в 1,7 раз. Именно его можно наблюдать невооруженным глазом с Земли.

Второй компонент системы — белый карлик. Звезда Сириус В практически равна нашему светилу по массе, что нетипично для таких объектов. Обычно белые карлики характеризуются массой в 0,6-0,7 солнечных. При этом размеры Сириуса В приближены к земным. Предполагается, что стадия белого карлика началась для этой звезды примерно 120 миллионов лет назад. Когда Сириус В располагался на главной последовательности, он, вероятно, представлял собой светило с массой в 5 солнечных и относился к спектральному классу В.

Сириус А, по подсчетам ученых, перейдет на следующую стадию эволюции примерно через 660 млн лет. Тогда он превратится в красного гиганта, а еще чуть позже — в белого карлика, как и его компаньон.

Альфа Орла

Как и Сириус, многие белые звезды, названия которых приведены ниже, из-за яркости и нередкого упоминания на страницах научно-фантастической литературы хорошо знакомы не только людям, увлекающимся астрономией. Альтаир — одно из таких светил. Альфа Орла встречается, например, у и Стивина Кинга. На ночном небе эта звезда хороша заметна из-за яркости и относительно близкого расположения. Расстояние, разделяющее Солнце и Альтаир, составляет 16,8 световых лет. Из звезд спектрального класса А ближе к нам только Сириус.

Альтаир по массе превышает Солнце в 1,8 раз. Его характерной особенностью является очень быстрое вращение. Один оборот вокруг оси звезда совершает меньше чем за девять часов. Скорость вращения в районе экватора — 286 км/с. Как результат «шустрый» Альтаир сплюснут с полюсов. Кроме того, из-за эллиптичной формы от полюсов к экватору снижается температура и яркость звезды. Этот эффект назван «гравитационным потемнением».

Еще одна особенность Альтаира в том, что его блеск со временем меняется. Он относится к переменным типа дельты Щита.

Альфа Лиры

Вега — самая изученная звезда после Солнца. Альфа Лиры — первая звезда, у которой определили спектр. Она же стала вторым после Солнца светилом, запечатленным на фотографии. Вега вошла и в число первых звезд, до которых ученые измерили расстояние методом парлакса. Длительный период яркость светила принималась за 0 при определении звездных величин других объектов.

Хорошо знакома альфа Лиры и астроному-любителю, и простому наблюдателю. Она является пятой по яркости среди звезд, входит в астеризм Летний треугольник вместе с Альтаиром и Денеб.

Расстояние от Солнца до Веги - 25,3 световых года. Ее экваториальный радиус и масса больше аналогичных параметров нашего светила в 2,78 и 2,3 раз соответственно. Форма звезды далека от идеального шара. Диаметр в районе экватора заметно больше, чем у полюсов. Причина — огромная скорость вращения. На экваторе она достигает 274 км/с (для Солнца этот параметр равен чуть больше двух километров в секунду).

Одна из особенностей Веги — окружающий ее пылевой диск. Предположительно, что он возник в результате большого числа столкновений комет и метеоритов. Пылевой диск вращается вокруг звезды и разогревается под действием ее излучения. В результате возрастает интенсивность инфракрасного излучения Веги. Не так давно в диске были обнаружены несимметричности. Вероятное их объяснение — наличие у звезды по крайней мере одной планеты.

Альфа Близнецов

Второй по яркости объект в созвездии Близнецов — это Кастор. Он так же, как и предыдущие светила, относится к спектральному классу А. Кастор — одна из самых ярких звезд ночного неба. В соответствующем списке он располагается на 23 месте.

Кастор представляет собой кратную систему, состоящую из шести компонентов. Два основные элемента (Кастор А и Кастор В) вращаются вокруг общего центра масс с периодом 350 лет. Каждая из двух звезд является спектральной-двойной. Компоненты Кастора А и Кастора В менее яркие и относятся предположительно к спектральному классу М.

Кастор С не сразу был связан с системой. Изначально он обозначался как самостоятельная звезда YY Близнецов. В процессе исследований этой области неба стало известно, что это светило физически связано с системой Кастора. Звезда вращается вокруг общего для всех компонентов центра масс с периодом в несколько десятков тысяч лет и также является спектральной-двойной.

Бета Возничего

Небесный рисунок Возничего включает примерно 150 «точек», многие из них — это белые звезды. Названия светил мало что скажут человеку, далекому от астрономии, но это не умаляет их значения для науки. Самым ярким объектом небесного рисунка, относящимся к спектральному классу А, является Менкалинан или бета Возничего. Имя звезды в переводе с арабского означает «плечо обладателя поводьев».

Менкалинан — тройная система. Два ее компонента — субгиганты спектрального класса А. Яркость каждого из них превышает аналогичный параметр Солнца в 48 раз. Они разделены расстоянием в 0,08 астрономические единицы. Третий компонент — это красный карлик, удаленный от пары на 330 а. е.

Эпсилон Большой Медведицы

Самая яркая «точка» в, пожалуй, наиболее известном созвездии северного неба (Большая Медведица) — это Алиот, также относящийся к классу А. Видимая величина — 1,76. В списке самых ярких светил звезда занимает 33 место. Алиот входит в астеризм Большой ковш и располагается ближе других светил к чаше.

Спектр Алиота характеризуется необычными линиями, колеблющимися с периодом в 5,1 дня. Предполагается, что особенности связаны с воздействием магнитного поля звезды. Колебания спектра, по последним данным, могут возникать из-за близкого расположения космического тела с массой в почти 15 масс Юпитера. Так ли это, пока загадка. Ее, как и другие тайны звезд, астрономы пытаются понять каждый день.

Белые карлики

Рассказ о белых звездах будет неполным, если не упомянуть о той стадии эволюции светил, которая обозначается как «белый карлик». Название свое такие объекты получили из-за того, что первые обнаруженные из них принадлежали спектральному классу А. Это был Сириус В и 40 Эридана В. На сегодняшний день белыми карликами называют один из вариантов финальной стадии жизни звезды.

Остановимся более подробно на жизненном цикле светил.

Звездная эволюция

За одну ночь звезды не рождаются: любая из них проходит несколько стадий. Сначала облако газа и пыли начинает сжиматься под действием собственных Медленно оно приобретает форму шара, при этом энергия гравитации превращается в тепло — растет температура объекта. В тот момент, когда она достигает величины в 20 миллионов Кельвинов, начинается реакция ядерного синтеза. Эта стадия и считается началом жизни полноценной звезды.

Большую часть времени светила проводят на главной последовательности. В их недрах постоянно идут реакции водородного цикла. Температура звезд при этом может различаться. Когда в ядре заканчивается весь водород, начинается новая стадия эволюции. Теперь топливом становится гелий. При этом звезда начинает расширяться. Ее светимость увеличивается, а температура поверхности, наоборот, падает. Звезда сходит с главной последовательности и становится красным гигантом.

Масса гелиевого ядра постепенно увеличивается, и оно начинает сжиматься под собственным весом. Стадия красного гиганта заканчивается гораздо быстрее, чем предыдущая. Путь, по которому пойдет дальнейшая эволюция, зависит от изначальной массы объекта. Маломассивные звезды на стадии красного гиганта начинают раздуваться. В результате этого процесса объект сбрасывает оболочки. Образуется и оголенное ядро звезды. В таком ядре завершились все реакции синтеза. Оно называется гелиевым белым карликом. Более массивные красные гиганты (до определенного предела) эволюционируют в углеродных белых карликов. В их ядрах присутствуют более тяжелые элементы, чем гелий.

Характеристики

Белые карлики — тела, по массе, как правило, очень близкие к Солнцу. При этом их размер соответствует земному. Колоссальная плотность этих космических тел и происходящие в их недрах процессы необъяснимы с точки зрения классической физики. Тайны звезд помогла раскрыть квантовая механика.

Вещество белых карликов представляет собой электронно-ядерную плазму. Сконструировать его даже в условиях лаборатории практически невозможно. Поэтому многие характеристики таких объектов остаются непонятными.

Даже если изучать всю ночь звезды, обнаружить хотя бы один белый карлик без специальной аппаратуры не получится. Их светимость значительно меньше солнечной. По подсчетам ученых, белые карлики составляют примерно от 3 до 10% всех объектов Галактики. Однако на сегодняшний день найдены лишь те из них, которые расположены не дальше, чем на расстоянии 200-300 парсек от Земли.

Белые карлики продолжают эволюционировать. Сразу после образования они имеют высокую температуру поверхности, но быстро остывают. Через несколько десятков миллиардов лет после образования, согласно теории, белый карлик превращается в черного карлика — не излучающее видимый свет тело.

Белая, красная или синяя звезда для наблюдателя отличаются прежде всего цветом. Астроном смотрит глубже. Цвет для него сразу многое рассказывает о температуре, размерах и массе объекта. Голубая или светлая синяя звезда — гигантский раскаленный шар, по всем параметрам сильно опережающий Солнце. Белые светила, примеры которых описаны в статье, несколько меньше. Номера звезд в различных каталогах также многое сообщают профессионалам, но далеко не все. Большое количество сведений о жизни далеких космических объектов либо еще не получили объяснения, либо остаются даже не обнаруженными.

Мир небесных тел

Люди с давних пор относятся к солнцу с любовью и особым уважением. Ведь уже в древности они поняли, что без солнца не прожить ни человеку, ни зверю, ни растению.
Солнце - ближайшая к земле звезда. Как и друге звёзды, это огромное раскалённое небесное тело, которое постоянно излучает свет и тепло. Солнце - источник света и тепла для всего живого на Земле.

Используя информацию, впиши цифровые данные в текст.
Диаметр Солнца в 109 раз больше диаметра Земли. Масса Солнца в 330 тысяч раз больше массы нашей планеты. Расстояние от Земли до Солнца составляет 150 миллионов километров. Температура на поверхности Солнца достигает 6 тысяч градусов, а в центре Солнца - 15 - 20 миллионов градусов.

Невооруженным глазом человек может увидеть на ночном небе примерно 6 тысяч звёзд. Учёным же известны многие миллиарды звёзд.
Звёзды различаются по размеру, цвету, яркости.
По цвету различают белые, голубые, жёлтые и красные звёзды.

Солнце относится к жёлтым звёздам.

Голубые звёзды - самые горячие, далее идут белые, затем - жёлтые, самые холодные - красные звёзды.
Самые яркие звёзды, испускают в 100 тысяч раз больше света, чем Солнце. Но известны и такие, которые светят в миллион раз слабее Солнца.

Различие звёзд по цвету

Солнце и движущиеся вокруг него небесные тела составляют Солнечную систему. Постройте модель Солнечной системы. Для этого вылепите из пластилина модели планет и расположите их в правильной последовательности на листе картона. Подпишите на табличках названия планет и наклейте их на вашу модель.





Разгадай кроссворд.



открыть незаполненный кроссворд>>

1. Самая большая планета Солнечной системы. Ответ: Юпитер
2. Планета, имеющая хорошо заметные в телескоп кольца. Ответ: Сатурн
3. Самая близкая к Солнцу планета. Ответ: Меркурий
4. Самая далёкая от Солнца планета. Ответ: Нептун
5. Планета, на которой мы живём. Ответ: Земля
6. Планета - соседка Земли, расположенная ближе к Солнцу, чем Земля. Ответ: Венера
7. Планета - соседка Земли, расположенная дальше от Солнца, чем Земля.
Ответ: Марс
8. Планета, расположенная между Сатурном и Нептуном. Ответ: Уран

Пользуясь различными источниками информации, подготовьте сообщение о звезде, созвездии или планете, о которых вы хотели бы побольше узнать. Запишите основные сведения для вашего сообщения.

Марс - одна из пяти планет Солнечной системы, которые можно увидеть с Земли невооружённым глазом. С Земли он выглядит как маленькая красная точка, поэтому Марс иногда называют Красной планетой. Планета носит имя древнеримского бога войны, у неё есть два спутника Фобос и Деймос. Это имена двух сыновей бога войны, они переводятся как "Страх" и "Ужас". Марс - четвёртая планета от Солнца. По многим характеристикам он очень похож на Землю. Имеет атмосферу, на Марсе происходит смена времён года. На обоих полюсах планеты, как и на Земле, находятся ледяные шапки. По размеру Марс почти в два раза меньше нашей планеты.

С помощью телескопа можно наблюдать 2 миллиарда звезд до 21 звездной величины. Существует Гарвардская спектральная классификация звезд. В ней спектральные классы расположены в порядке уменьшения температуры звезд. Классы обозначены буквами латинского алфавита. Их семь: O — B — A — P — O — K — M.

Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого 02), представляются желтыми, звезды же спектральных классов К и М - красные.

Яркость и цвет звезд

Все звезды имеют цвет. Различают голубые, белые, желтые, желтоватые, оранжевые и красные звезды. Например, Бетельгейзе - красная звезда, Кастор - белая, Капелла - желтая. По яркости они делятся на звезды 1-й, 2-й, ... n-й звездной величины (n max = 25). К истинным размерам термин «звездная величина» отношения не имеет. Звездная величина характеризует световой поток, приходящий на Землю от звезды. Звездные величины могут быть и дробными, и отрицательными. Шкала звездных величин основана на восприятии света глазом. Разделение звезд на звездные величины по видимой яркости выполнил древнегреческий астроном Гиппарх (180 - 110 гг. до н. э.). Наиболее ярким звездам Гиппарх приписал первую звездную величину; следующие по градации блеска (т. е. примерно в 2,5 раза более слабые) он посчитал звездами второй звездной величины; звезды, слабее звезд второй звездной величины в 2,5 раза, были названы звездами третьей звездной величины и т. д.; звездам на пределе видимости невооруженным глазом была приписана шестая звездная величина.

При такой градации блеска звезд получалось, что звезды шестой звездной величины слабее звезд первой звездной величины в 2,55 раза. Поэтому в 1856 г, английский астроном Н. К. Погсои (1829—1891 гг.) предложил считать звездами шестой величины те, которые слабее звезд первой звездной величины ровно в 100 раз. Все звезды расположены на разных расстояниях от Земли. Проще было бы сравнивать звездные величины, если бы расстояния были равны.

Звездная величина, которую звезда имела бы при расстоянии в 10 парсек, называется абсолютной звездной величиной. Обозначается абсолютная звездная величина - M , а видимая звездная величина - m .

Химический состав наружных слоев звезд, с которых приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а содержание остальных элементов достаточно невелико.

Температура и масса звезд

Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности в единицу времени, определяется из закона Стефана - Больцмана.

Деление звезд на основании сопоставления светимости звезд сих температурой и цветом и абсолютной звездной величиной (диаграмма Герцшпрунга-Рессела):

  1. главная последовательность (в центре ее находится Солнце - желтый карлик)
  2. сверхгиганты (велики по размерам и большая светимость: Антарес, Бетельгейзе)
  3. последовательность красных гигантов
  4. карлики (белые - Сириус)
  5. субкарлики
  6. бело-голубая последовательность

Это разделение также и по возрасту звезды.

Различают следующие звезды:

  1. обычные (Солнце);
  2. двойные (Мицар, Албкор) делятся на:
  • а) визуально-двойные, если их двойственность замечена при наблюдении в телескоп;
  • б) кратные — это система звезд с числом больше чем 2, но меньше чем 10;
  • в) оптически-двойные - это такие звезды, что их близость является результатом случайной проекции на небо, а в пространстве они далеки;
  • г) физически-двойные — это звезды, которые образуют единую систему и обращаются под действием сил взаимного притяжения вокруг общего центра масс;
  • д) спектрально-двойные — это звезды, которые при взаимном обращении подходят близко друг к другу и их двойственность можно определить но спектру;
  • е) затменно-двойные - это звезды» которые при взаимном обращении загораживают друг друга;
  • переменные (б Цефея). Цефеиды — переменные по яркости звезды. Амплитуда изменения яркости составляет не более 1,5 звездной величины. Это пульсирующие звезды, т. е. они периодически расширяются и сжимаются. Сжатие наружных слоев вызывает их нагрев;
  • нестационарные.
  • Новые звезды - это звезды, которые существовали давно, но внезапно вспыхнули. Их яркость увеличилась за короткое время в 10 000 раз (амплитуда изменения яркости от 7 до 14 звездных величин).

    Сверхновые звезды - это звезды, которые были незаметны на небе, но неожиданно вспыхнули и увеличили яркость в 1000 раз относительно обычных новых звезд.

    Пульсар - нейтронная звезда, возникающая при взрыве сверхновой.

    Данные об общем числе пульсаров и времени их жизни свидетельствуют, что в среднем в столетие рождаются 2-3 пульсара, это приблизительно совпадает с частотой вспышек сверхновых в Галактике.

    Эволюция звезд

    Как и все тела в природе, звезды не остаются неизменными, они рождаются, эволюционируют, и наконец умирают. Раньше астрономы считали, что на образование звезды из межзвездных газа и пыли требуются миллионы лет. Но в последние годы были получены фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звезд. На снимках 1947 г. в этом месте зафиксирована группа из трех звездоподобных объектов. К 1954 г. некоторые из них стали продолговатыми, а к 1959 г. эти продолговатые образования распались на отдельные звезды. Впервые в истории человечества люди наблюдали рождение звезд буквально на глазах.

    Во многих участках неба существуют условия, необходимые для появления звезд. При изучении фотографий туманных участков Млечного Пути удалось обнаружить маленькие черные пятнышки неправильной формы, или глобулы, представляющие собой массивные скопления пыли и газа. Эти газопылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных за ними звезд. Размеры глобул огромны - до нескольких световых лет в поперечнике. Несмотря на то что вещество в этих скоплениях очень разрежено, общий объем их настолько велик, что его вполне хватает для формирования небольших скоплений звезд, по массе близких к Солнцу.

    В черной глобуле под действием давления излучения, испускаемого окружающими звездами, происходит сжатие и уплотнение вещества. Такое сжатие протекает в течение некоторого времени, зависящего от окружающих глобулу источников излучения и интенсивности последнего. Гравитационные силы, возникающие из-за концентрации массы в центре глобулы, тоже стремятся сжать глобулу, заставляя вещество падать к ее центру. Падая, частицы вещества приобретают кинетическую энергию и разогревают газопы левое облако.

    Падение вещества может длиться сотни лет. Вначале оно происходит медленно, неторопливо, поскольку гравитационные силы, притягивающие частицы к центру, еще очень слабы. Через некоторое время, когда глобула становится меньше, а поле тяготения усиливается, падение начинает происходить быстрее. Но глобула огромна, не менее светового года в диаметре. Это значит, что расстояние от ее внешней границы до центра может превышать 10 триллионов километров. Если частица от края глобулы начнет падать к центру со скоростью немногим менее 2 км/с, то центра она достигнет только через 200 ООО лет.

    Продолжительность жизни звезды зависит от ее массы. Звезды С массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного топлива и могут светить десятки миллиардов лет. Внешние слои звезд, подобных нашему Солнцу, с массами не большими 1,2 массы Солнца, постепенно расширяются и, в конце концов, совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик.

    > Звезды

    Звезды – массивные газовые шары: история наблюдений, названия во Вселенной, классификация с фото, рождение звезды, развитие, двойные звезды, список самых ярких.

    Звезды - небесные тела и гигантские светящиеся сферы плазмы. Только в нашей галактике Млечный Путь их насчитывают миллиарды, включая Солнце. Не так давно мы узнали, что некоторые из них еще и располагают планетами.

    История наблюдений за звездами

    Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше , а значит подчиняются тем же физическим законам.

    Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

    Наименование звезд Вселенной

    Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.

    В современном мире насчитывается (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона (Альфа Ориона) – «рука (подмышка) великана».

    Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.

    Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.

    Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.

    Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.



    Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск.

    Такая звезда переживает ощущение гидростатического баланса. Гравитация заставляет объект сжиматься, но ядерный синтез выталкивает его наружу. Эти силы работают на уравновешивании, и звезде удается сохранять форму сферы. Размер зависит от массивности. Черта – 80 масс Юпитера. Это минимальная отметка, при которой возможно активировать процесс плавления. Но в теории максимальная масса – 100 солнечных.


    Если топлива нет, то у звезды больше не хватает массы, чтобы продлить ядерный синтез. Она превращается в белого карлика. Внешнее давление не работает, и она сокращается в размерах из-за силы тяжести. Карлик продолжает сиять, потому что все еще остаются горячие температуры. Когда он остынет, то обретет фоновую температуру. На это уйдут сотни миллиардов лет, поэтому пока просто невозможно найти ни единого представителя.

    Планетные системы белых карликов

    Астрофизик Роман Рафиков о дисках вокруг белых карликов, кольцах Сатурна и будущем Солнечной системы

    Компактные звезды

    Астрофизик Александр Потехин о белых карликах, парадоксе плотности и нейтронных звездах:


    Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве.

    Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность.

    Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.


    Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом.

    Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу.

    Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические.

    Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь).

    Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.

    Формирование звезды

    Давайте внимательнее изучим процесс рождения звезды. Сначала мы видим гигантское медленно вращающееся облако, наполненное водородом и гелием. Внутренняя гравитация заставляет его сворачиваться внутрь, из-за чего вращение ускоряется. Внешние части трансформируются в диск, а внутренние в сферическое скопление. Материал разрушается, становясь горячее и плотнее. Вскоре появляется шарообразная протозведа. Когда тепло и давление вырастают до 1 миллиона °C, атомные ядра сливаются и зажигается новая звезда. Ядерный синтез превращает небольшое количество атомной массы в энергию (1 грамм массы, перешедший в энергию, приравнивается к взрыву 22000 тонн тротила). Посмотрите также объяснение на видео, чтобы лучше разобраться в вопросе звездного зарождения и развития.

    Эволюция протозвездных облаков

    Астроном Дмитрий Вибе об актуализме, молекулярных облаках и рождении звезды:

    Рождение звезд

    Астроном Дмитрий Вибе о протозвездах, открытии спектроскопии и гравотурбулентной модели звездообразования:

    Вспышки на молодых звездах

    Астроном Дмитрий Вибе о сверхновых, типах молодых звезд и вспышке в созвездии Ориона:

    Звездная эволюция

    Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

    Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

    Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

    Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

    Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино. Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

    Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это . Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в .

    Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

    Термоядерные реакции и компактные объекты

    Астрофизик Валерий Сулейманов о моделировании атмосфер, «большом споре» в астрономии и слиянии нейтронных звезд:

    Астрофизик Сергей Попов о расстоянии до звезд, образовании черных дыр и парадоксе Ольберса:

    Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в многократные.

    Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.

    Релятивистские двойные звезды

    Астрофизик Сергей Попов об измерении массы звезды, черных дырах и ультрамощных источниках:

    Свойства двойных звезд

    Астрофизик Сергей Попов о планетарных туманностях, белых гелиевых карликах и гравитационных волнах:

    Характеристика звезд

    Яркость

    Для описания яркости звездных небесных тел используют величину и светимость. Понятие величины основывается еще на работах Гиппарха в 125 году до н.э. Он пронумеровал звездные группы, полагаясь на видимую яркость. Самые яркие – первая величина, и так до шестой. Однако расстояние между и звездой способно влиять на видимый свет, поэтому сейчас добавляют описание фактической яркости – абсолютная величина. Ее вычисляют при помощи видимой величины, как если бы она составляла 32.6 световых лет от Земли. Современная шкала величин поднимается выше шести и опускается ниже единицы (видимая величина достигает -1.46). Ниже можете изучить список самых ярких звезд на небе с позиции наблюдателя Земли.

    Список самых ярких звезд видимых с Земли

    Название Расстояние, св. лет Видимая величина Абсолютная величина Спектральный класс Небесное полушарие
    0 0,0000158 −26,72 4,8 G2V
    1 8,6 −1,46 1,4 A1Vm Южное
    2 310 −0,72 −5,53 A9II Южное
    3 4,3 −0,27 4,06 G2V+K1V Южное
    4 34 −0,04 −0,3 K1.5IIIp Северное
    5 25 0,03 (перем) 0,6 A0Va Северное
    6 41 0,08 −0,5 G6III + G2III Северное
    7 ~870 0,12 (перем) −7 B8Iae Южное
    8 11,4 0,38 2,6 F5IV-V Северное
    9 69 0,46 −1,3 B3Vnp Южное
    10 ~530 0,50 (перем) −5,14 M2Iab Северное
    11 ~400 0,61 (перем) −4,4 B1III Южное
    12 16 0,77 2,3 A7Vn Северное
    13 ~330 0,79 −4,6 B0.5Iv + B1Vn Южное
    14 60 0,85 (перем) −0,3 K5III Северное
    15 ~610 0,96 (перем) −5,2 M1.5Iab Южное
    16 250 0,98 (перем) −3,2 B1V Южное
    17 40 1,14 0,7 K0IIIb Северное
    18 22 1,16 2,0 A3Va Южное
    19 ~290 1,25 (перем) −4,7 B0.5III Южное
    20 ~1550 1,25 −7,2 A2Ia Северное
    21 69 1,35 −0,3 B7Vn Северное
    22 ~400 1,50 −4,8 B2II Южное
    23 49 1,57 0,5 A1V + A2V Северное
    24 120 1,63 (перем) −1,2 M3.5III Южное
    25 330 1,63 (перем) −3,5 B1.5IV Южное

    Другие известные звезды:

    Светимость звезды – скорость излучения энергии. Ее измеряют при помощи сравнения с солнечной яркостью. Например, Альфа Центавра А в 1.3 ярче Солнца. Чтобы произвести те же вычисления по абсолютной величине, придется учитывать, что 5 по шкале абсолютной приравнивается к 100 на отметке светимости. Яркость зависит от температуры и размера.

    Цвет

    Вы могли заметить, что звезды отличаются по цвету, который, на самом деле, зависит от поверхностной температуры.

    Класс Температура,K Истинный цвет Видимый цвет Основные признаки
    O 30 000-60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
    B 10 000-30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
    A 7500-10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
    F 6000-7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
    G 5000-6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
    K 3500-5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
    M 2000-3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

    Каждая звезда обладает одним цветом, но производит широкий спектр, включая все виды излучения. Разнообразные элементы и соединения поглощают и выбрасывают цвета или длины волн цвета. Изучая звездный спектр, можно разобраться в составе.

    Поверхностная температура

    Температура звездных небесных тел измеряется в кельвинах с температурой нуля, равной -273.15 °C. Температура темно-красной звезды – 2500К, ярко-красной – 3500К, желтой – 5500К, голубой – от 10000К до 50000К. На температуру частично влияет масса, яркость и цвет.

    Размер

    Размер звездных космических объектов определяется в сравнении с солнечным радиусом. У Альфа Центавра А – 1.05 солнечных радиусов. Размеры могут быть разными. Например, нейтронные звезды в ширину простираются на 20 км, а вот сверхгиганты – в 1000 раз больше солнечного диаметра. Размер влияет на звездную яркость (светимость пропорциональна квадрату радиуса). На нижних рисунках можно рассмотреть сравнение размеров звезд Вселенной, включая сопоставление с параметрами планет Солнечной системы.