Значение реципрокного торможения заключается. Современные представления о механизмах центрального торможения

Нормальная деятельность отдельных нервных центров и ЦНС в целом может осуществляться лишь при обязательном участии тормозных процессов.

Торможение в ЦНС -это активный процесс, проявляющий­ся в подавлении или ослаблении возбуждения. Явление торможе­ния в центральной нервной системе было открыто И. М. Сечено­вым в 1862г. в эксперименте на лягушке, у которой перерезали мозг на уровне зрительных бугров и удалили полушария головно­го мозга. После этого измеряли время рефлекса отдергивания задних лапок при погружении их в раствор серной кислоты. Этот рефлекс осуществляется спинномозговыми нейронами и его вре­мя служит показателем возбудимости нервных центров. Если на область зрительных бугров наложить кристалл хлорида натрия, то время рефлекса увеличивается, т.е. в области зрительных бугров имеются центры, оказывающие тормозящее влияние на спинно­мозговые рефлексы. Торможение может наступить не только в результате непосредственного воздействия на нервные центры, но и на рецепторы. Гольц показал, что рефлекс отдергивания од­ной лапки может быть заторможен более сильным раздражите­лем -сдавливанием другой лапки лягушки пинцетом. В данном случае торможение развивается в результате встречи двух воз­буждений в ЦНС, т. е. если в ЦНС поступают импульсы из разных рецептивных полей, то более сильные раздражения угнетают сла­бые и рефлекс на последние тормозится. Таким образом, процесс торможения тесно связан с процессом возбуждения.

Классификация видов торможения

Торможение в ЦНС можно классифицировать по различным признакам (рис.9): электрическому состоянию мембраны (гипер­поляризационное и деполяризационное); отношению к синапсу (постсинаптическое и пресинаптическое);нейрональной органи­зации (поступательное, возвратное, латеральное).

Торможение мембраны обычно является гиперполяризацион­ным, тормозной медиатор увеличивает проницаемость мембраны. Для ионов калия или хлора (возникает ТПСП) и мембрану труднее Довести до критического уровня деполяризации (при котором ней­рон генерирует ПД). В нейронных сетях коры тормозная функция принадлежит в основном ГАМК-эргическим вставочным нейро­нам. Эти тормозные нейроны имеют относительно короткие про-

екции, поэтому их влияние ограничено локальными областями ко­ры. Ингибирующее действие ГАМК осуществляется через ГАМК-рецепторы А-типа, которые изменяют проницаемость мембраны для ионов хлора, что приводит к гиперполяризации мембраны. Есть данные, что ТПСП могут возникать и за счет взаимодействия ГАМК с рецепторами В-типа, которые связаны с калиевыми кана­лами. Деполяризация мембраны тоже может привести к торможе­нию, если она становится чрезмерно длительной (застойной), та­кая деполяризация сопровождается инактивацией натриевых ка­налов, т. е. мембрана теряет свою возбудимость и не в состоянии ответить на приход новых возбуждений генерацией ПД.

Постсинаптическое торможение - основной вид торможе­ния, заключается в том, что в нервных окончаниях тормозящих нейронов под влиянием приходящего по аксону импульса выделя­ется медиатор, который гиперполяризует постсинаптическую мембрану другого возбуждающего нейрона. В мембране послед­него деполяризация не может достигнуть критического уровня, и поэтому возбуждение по нейрону не распространяется.

Пресинаптическое торможение локализуется в пресинаптических окончаниях, т.е. в разветвлениях (терминалях) возбужда­ющего нейрона. На этих терминалях располагаются окончания аксона тормозящего нейрона. При его возбуждении тормозной медиатор частично или полностью блокирует проведение воз­буждения возбуждающего нейрона, и его влияние не передается на другой нейрон.

Поступательное торможение обусловлено тем, что на пути следования возбуждения встречается тормозной нейрон.

Возвратное торможение осуществляется вставочными тор­мозными клетками (клетками Реншоу). Аксоны мотонейронов ча­сто дают коллатерали (ответвления), оканчивающиеся на клетках Реншоу. Аксоны клеток Реншоу оканчиваются на теле или дендритах этого мотонейрона, образуя тормозные синапсы. Возбуж­дение, возникающее в мотонейроне, распространяется по прямо­му пути к скелетной мускулатуре, а также по коллатералям к тор­мозящему нейрону, который посылает импульсы к мотонейронам и тормозит их. Чем сильнее возбуждение мотонейрона, тем силь­нее возбуждаются клетки Реншоу и тем более интенсивно они оказывают свое тормозящее действие, что предохраняет нервные клетки от перевозбуждения.

Рис.9. Механизмы и виды торможения Возможные состояния нейрона(А) и виды внутрицентрального торможения (Б)

Латеральное торможение является разновидностью возврат­ного торможения. Вставочные клетки могут формировать тор­мозные синапсы на соседних нейронах, блокируя боковые пути распространения возбуждения. В таких случаях возбуждение на­правляется по строго определенному пути. Этот вид торможения обеспечивает направленную иррадиацию возбуждения в ЦНС. Для ЦНС свойственнопессимальное торможение, близкое по своему происхождению пессимуму Введенского в нервно-мы­шечных соединениях. Пессимальное торможение развивается в синапсах при раздражениях высокой частоты и зависит от низкой лабильности синапсов. Данное явление связано с появлением при частых импульсах стойкой деполяризации постсинаптической мембраны, что нарушает распространение возбуждения и ре­флекс тормозится. К пессимальному торможению особенно склонны вставочные нейроны спинного мозга и клетки ретику­лярной формации. Пессимальное торможение предохраняет нервную клетку от перевозбуждения.

В нервной клетке может развиваться торможение после пре­кращения ее возбуждения -так называемоеторможение вслед за возбуждением, возникающее в том случае, если после окончания возбуждения в клетке развивается сильная следовая гиперполяри­зация мембраны. Если в этот момент к клетке приходит новый импульс, то возникший постсинаптический потенциал оказывается достаточным для критической деполяризации мембраны.

Реципрокное (сопряженное) торможение. Это явление, от­бытое Ч. Шеррингтоном, обеспечивает согласованную работу Мышц-антагонистов, например, сгибателей и разгибателей конечностей, т.е. движение конечностей. При сгибании ног в коленном суставе развивается возбуждение в спинномозговом центре мышц-сгибателей и одновременно развивается торможение в нервном центре мышц-разгибателей. Наоборот, при разгибании, в нервном центре мышц-разгибателей наступает возбуждение, а в центре мышц-сгибателей -торможение. Такие взаимодейст­вия названы реципрокным торможением. Реципрокное взаимо­действие возникает и при более сложных двигательных актах, на­пример при ходьбе. В этом случае происходит сгибание то одной, то другой ноги. Если в данный момент правое колено согнуто, то в центре сгибателей правой ноги развивается возбуждение, а в цен­тре ее разгибателей -торможение. На левой стороне имеются противоположные взаимоотношения -центры разгибателей ле­вой ноги возбуждены, а центры сгибателей заторможены. Во вре­мя следующего шага соотношения возбуждения и торможения в нейронах меняются в противоположном направлении. Чем слож­нее двигательный акт, тем большее количество нейронов, регули­рующих отдельные мышцы или их группы, находится в сопря­женных соотношениях. Реципрокное торможение осуществляет­ся при участии тормозящих вставочных нейронов спинного моз­га. Реципрокные соотношения между отдельными центрами не постоянны и в типичной форме они выявляются лишь у спиналь-ных животных. Реципрокное торможение может изменяться под влиянием нейронов, расположенных выше спинальных центров (особенно центров коры головного мозга). Например, обе ноги можно согнуть одновременно вопреки описанному выше сопря­женному торможению центров сгибателей и разгибателей. Из­менчивость взаимодействия между двигательными центрами обеспечивает сложнейшие движения человека во время разнооб­разной трудовой деятельности, сложных спортивных движений, танцев, игры на музыкальных инструментах и др.

Явление центрального торможения было открыто И.М.Сеченовым в 1862 г. Он обнаружил, что если на поперечный разрез зрительных бугров лягушки наложить кристаллик поваренной соли или подействовать электрическим слабым током, то время рефлекса Тюрка резко удлиняется (рефлекс Тюрка - сгибание лапки при погружении ее у в кислоту). Вскоре были открыты новые факты, демонстрирующие явления торможения в ЦНС. Гольц показал, что рефлекс Тюрка затормаживается при сдавливании пинцетом другой лапки, Шеррингтон доказал наличие торможения рефлекторного сокращения разгибателя при осуществлении сгибательного рефлекса. Было доказано, что при этом интенсивность рефлекторного торможения зависит от соотношения силы возбуждающего и тормозящего раздражителей.

В центральной нервной системе существует несколько способов торможения, имеющих разную природу и разную локализацию. но в принципе основанных на одном механизме - увеличении разницы между критическим уровнем деполяризации и величиной мембранного потенциала нейронов.

1. Постсинаптическое торможение. Тормозные нейроны . В настоящее время установлено, что в ЦНС наряду с возбуждающими нейронами существуют и особые тормозные нейроны. Примером может служить т.н. клетка Реншоу в спинном мозге. Реншоу открыл, что аксоны мотонейронов перед выходом из спинного мозга дают одну или несколько коллатералей, которые заканчиваются на особых клетках, чьи аксоны образуют тормозные синапсы на мотонейронах данного сегмента. Благодаря этому возбуждение, возникающее в мотонейроне, по прямому пути распространяется на периферию к скелетной мышце, а по коллатерали активирует тормозную клетку, которая подавляет дальнейшее возбуждение мотонейрона. Это механизм, автоматически охраняющий нервные клетки от чрезмерного возбуждения. Торможение, осуществляющееся при участии клеток Реншоу, получило название возвратного постсинаптического торможения. Тормозным медиатором у клетки Реншоу является глицин.

Нервные импульсы, возникающее при возбуждении тормозящих нейронов, не отличаются от потенциалов действия обычных возбуждающих нейронов. Однако в нервных окончаниях тормозящих нейронов под влиянием этого импульса выделяется медиатор, который не деполяризует, а, наоборот, гиперполяризует постсинаптическую мембрану. Эта гиперполяризация регистрируется в форме тормозного постсинаптического потенциала (ТПСП) - электроположительной волны. ТПСП ослабляет возбудительный потенциал и препятствует тем самым достижению критического уровня деполяризации мембраны, необходимого для возникновения распространяющегося возбуждения. Постсинаптическое торможение можно устранить стрихнином, который блокирует тормозные синапсы.



2.Посттетаническое торможение . Особым видом торможения является такое, которое возникает в случае, если после окончания возбуждения в клетке возникает сильная гиперполяризация мембраны. Возбуждающий постсинаптический потенциал в этих условиях оказывается недостаточным для критической деполяризации мембраны, и генерации распространяющегося возбуждения. Причина такого торможения в том, что следовые потенциалы способны к суммации, и после серии частых импульсов возникает суммация положительного следового потенциала.

3.Пессимальное торможение . Торможение деятельности нервной клетки может осуществляться и без участия особых тормозных структур. В этом случае оно возникает в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под влиянием слишком частых импульсов (как пессимум в нервно-мышечном препарате). К пессимальному торможению особо склонны промежуточные нейроны спинного мозга, нейроны ретикулярной формации. При стойкой деполяризации в них наступает состояние, подобное катодической депрессии Вериго.

4.Пресинаптическое торможение . Оно открыто в ЦНС сравнительно недавно, поэтому изучено меньше. Пресинаптическое торможение локализуется в пресинаптических терминалях перед синаптической бляшкой. На пресинаптических терминалях располагаются окончания аксонов других нервных клеток, образующих здесь аксо-аксональные синапсы. Медиаторы их деполяризуют мембрану терминалей и приводят в состояние, подобное катодической депрессии Вериго. Это обусловливает частичную или полную блокаду проведения по нервным волокнам возбуждающих импульсов, идущих к нервным окончаниям. Пресинаптическое торможение обычно длительное.

В 1863 году И.М. Сеченов открыл процесс торможения в ЦНС.

Торможение существует наряду с возбуждением и представляет собой одну из форм деятельности нейрона. Торможением называют особый нервный процесс, выражающийся в уменьшении или полном отсутствии ответной реакции на раздражение.

Начало изучения торможения в центральной нервной системе связывают с выходом в свет работы И.М.Сеченого «Рефлексы головного мозга» (1863), в которой он показал возможность торможения двигательных рефлексов лягушки при химическом раздражении зрительных бугров головного мозга.

Классический опыт Сеченова заключается в следующем: у лягушки с перерезанным головным мозгом на уровне зрительных бугров определяла время сгибательного рефлекса при раздражении лапки серной кислотой. После этого на зрительные бугры накладывали кристаллик поваренной соли и снова определяли время рефлекса. Оно постепенно увеличивалось, вплоть до полного исчезновения реакции. После снятия кристаллика соли и промывания мозга физиологическим раствором время рефлекса постепенно восстанавливалось. Это позволило говорить о том, что торможение – активный процесс, возникающий при раздражении определенных отделов центральной нервной системы.

Позже И.М.Сеченовым и его учениками было показано, что торможение в центральной нервной системе может возникнуть при нанесении сильного раздражения на любые афферентные пути.

Виды и механизмы торможения. Благодаря микроэлектродной технике исследования стало возможным изучение процесса торможения на клеточном уровне.

В центральной нервной системе наряду с возбуждающими имеются и тормозящие нейроны. На каждой нервной клетке располагаются возбуждающие и тормозящие синапсы. А поэтому в каждый данный момент на теле нейрона возникает в одних синапсах возбуждение, а в других – торможение; соотношение этих процессов определяет характер ответной реакции.

Различают два вида торможения в зависимости от механизмов его возникновения: деполяризационное гиперполяризационное. Деполяризационное торможение возникает вследствие длительной деполяризации мембраны, а гиперполяризационное – вследствие гиперполяризации мембраны.

Наступлению деполяризационного торможения предшествует состояние возбуждения. Вследствие длительного раздражения это возбуждение переходит в торможение. В основе возникновения деполяризационного торможения лежит инактивация мембраны по натрию, вследствие сего уменьшается потенциал действия и его раздражающее влияние на соседние участки, в итоге прекращается проведение возбуждения.

Гиперполяризационное торможение осуществляется с участием особых тормозных структур и связано с изменением проницаемости мембраны по отношению к калию и хлору, что вызывает увеличение мембранного и порогового потенциалов, в результате чего становится невозможной ответная реакция.

По характеру возникновения различают первичное и вторичное торможение. Первичное торможение возникает под влиянием раздражения сразу без предварительного возбуждения и осуществляется с участием тормозных синапсов. Вторичное торможение осуществляется без участия тормозных структур и возникает вследствие перехода возбуждения в торможение.

Первичное торможение по механизму возникновения может быть гиперполяризационным и деполяризационным, а по месту возникновения – постсинаптическим и пресинаптическим.

Первичное гиперполяризационное постсинаптическое торможение характерно для мотонейронов и осуществляется через вставочный тормозной нейрон. Импульс, пришедший к тормозному синапсу, вызывает гиперполяризацию постсинаптической мембраны мотонейрона. При этом возрастает величина МП на 5-8 мВ. Это увеличение МП называют тормозным постсинаптическим потенциалом (ТПСП). Величина и длительность тормозного постсинаптического потенциала зависят от силы раздражения и его взаимодействия с возбуждающим постсинаптическим потенциалом (ВПСП).

Постсинаптическое торможение связано с выделением в синапсах медиатора, который изменяет ионную проницаемость постсинаптической мембраны. Хорошо изучено открытое Экклосом и сотрудниками (1954) постсинаптическое торможение мотонейрона, возникающее под влиянием клеток Реншоу. Клетки Реншоу располагаются в передних рогах спинного мозга и обладают высокой электрической активностью. Они могут даже в ответ на одиночный пресинаптический импульс генерировать потенциалы очень высокой частоты – до 1400 импульсов в секунду. Возбуждение к клеткам Реншоу приходит антидромно (в обратном направлении) по разветвлениям аксона мотонейрона, отходящим от него при выходе из спинного мозга. В свою очередь аксон клетки Реншоу контактирует с сомой этого же мотонейрона. Возбуждение, пришедшее антидромно к клетке Реншоу, вызывает в ней высокочастотный разряд, под влиянием которого в мотонейроне создается ТПСП, длящийся до 100 мс. Этот вид постсинаптического торможения называют возвратным или антидромным торможением. Медиатор клетки Реншоу является ацетилхолин.

Первичное деполяризационное пресинаптическое торможение

Развивается в пресинаптических разветвлениях аксонов афферентных нейронов, к которым подходят окончания промежуточных нейронов, образующие на них аксональные синапсы. Эти нейроны обладают высокой электрической активностью. Посылая высокочастотные разряды, они создают на пресинаптических разветвлениях афферентных аксонов длительную деполяризацию (до нескольких сотен миллисекунд). В связи с этим здесь блокируется проведение импульсов, идущих к синапсам мотонейронов, вследствие чего уменьшается или полностью прекращается их активность.

Пресинаптическое торможение является широко распространенным механизмом в ЦНС. Установлено, что оно может быть вызвано не только импульсами с афферентным волокном, но и при раздражении различных структур головного мозга.

Вторичное торможение осуществляется без участия специальных тормозных структур и развивается в возбуждающих синапсах. Такого типа торможение было изучено Н.Е.Введенским (1886) и названо пессимальным торможением в любом участке, обладающем низкой лабильностью (например, в нервно-мышечном синапсе или в синапсах ЦНС). По механизму возникновения вторичное торможение может быть деполяризационным и гиперполяризационным. Вторичным деполяризационным торможением являются рефрактерность и пессимальное торможение.

Механизм возникновения пессимального торможения детально изучен на нервно-мышечных синапсах. Установлено, что в основе его развития лежит стойкая деполяризация, которая может возникнуть как в постсинаптической, так и в пресинаптической мембране синапса под влиянием частой стимуляции.

Вторичное гиперполяризационное торможение возникает после возбуждения в тех же самых нейронах. При сильном возбуждении нейронов их ПД сопровождается последующей длительной гиперполяризацией, наступающей вследствие повышения проницаемости мембраны по калию. Поэтому возникающий при данной силе раздражения ВПСП становится недостаточным для того, что бы деполяризовать мембрану до критического уровня. В результате наблюдается уменьшение или отсутствие реакции.

Роль торможения.

a. Охранительная роль – для предотвращения истощения медиаторов и прекращения деятельности ЦНС.

b. Участвует в обработке поступающей в ЦНС информации.

c. Торможение важный фактор обеспечения координационной деятельности ЦНС.

15. Координационная деятельность ЦНС. Механизмы координации. Факторы, обеспечивающие возможность координации.

Понятие о координации. Приспособление организма к различным изменениям внешней среды возможно благодаря наличию в ЦНС координации функций. Под координацией понимают взаимодействие нейронов, а, следовательно, и нервных процессов, в ЦНС, которое обеспечивает ее согласованную деятельность, направленную на интеграцию (объединение) функций различных органов и систем организма.

Известен ряд механизмов, лежащих в основе координирующей деятельности нервной системы. Одни из них связаны с морфологическими особенностями ее строения (принцип общего конечного пути, принцип обратных связей), другие – с функциональными свойствами (иррадиация, индукция и др.)

Иррадиация возбуждения в центральной нервной системе. В 1908 г. А. А. Ухтомский и Н. Е. Введенский в совместной работе установили, что любое возбуждение, возникающее при раздражении того или иного рецептора, придя в центральную нервную систему, широко по ней распространяется- иррадиирует . Оно захватывает не только центры данного рефлекса, но и другие участки центральной нервной системы. Иррадиация тем шире, чем сильнее и длительное афферентное раздражение.

В основе иррадиации лежат многочисленные связи аксонов афферентных нейронов с дендритами и телами нейронов ЦНС, имеющих большое число контактов с различными нервными центрами и друг с другом. Возбуждение может распространяться на большие расстояния: от нейронов спинного мозга к различным отделам головного мозга вплоть до коры больших полушарий.

Получены экспериментальные данные, позволяющие говорить о закономерностях иррадиации. Оказалось, что в реакцию вовлекаются прежде всего, нейроны, имеющие самый маленький пороговый потенциал, т.е. обладающие наиболее высокой возбудимостью. В них, прежде всего деполяризация достигает критического уровня и возникает волна возбуждения. При увеличении интенсивности раздражения в реакцию вовлекаются менее возбудимые нейроны, при этом процесс возбуждения захватывает все большее количество клеток ЦНС.

Но, несмотря на широкую связь нервных центров, иррадиация возбуждения в ЦНС имеет свои пределы, вследствие чего в деятельное состояние приходят лишь определенные ее отделы.

Процессы индукции в ЦНС. Индукция – один из важнейших принципов координации, который состоит в том, что при возникновении возбуждения в одном из участков ЦНС в сопряженных центрах возникает противоположный процесс – торможение. И, наоборот, при возникновении торможения в одних центрах в сопряженных возникает возбуждение. Индукция ограничивает процесс иррадиации.

Различают одновременную (или пространственную) и последовательную индукцию. При одновременной индукции в одно и то же время в одном центре возникает процесс возбуждения, а в сопряженном центре – торможение (или наоборот). Примером одновременной индукции может быть рассмотренная выше реципрокная иннервация мышц-антагонистов.

Процессам, происходящим в ЦНС, свойственна большая подвижность, без которой невозможно осуществление сложных и быстрых двигательных актов и других ответных реакций. В одном и том же центре осуществляется смена происходящих в нем процессов на противоположные. Смену возбуждения называют отрицательной последовательной индукцией, а торможение на возбуждение – положительной последовательной индукцией . Благодаря такой последовательной смене процессов в нервных центрах возможно чередование сгибательных и разгибательных реакций конечностей, что необходимо для осуществления двигательного акта.

Конвергенция. Импульсы приходящие в ЦНС по различным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же промежуточным и эфекторным нейронам. Этот факт лег в основу принципа конвергенции, установленного Ч.Шеррингтоном. Конвергенция нервных импульсов объясняется тем, что на теле и дендритах каждого нейрона в ЦНС оканчиваются аксоны множества других нервных клеток. В спинном и продолговатом мозгу конвергенция имеет сравнительно ограниченный характер: на вставочных и моторных нейронах конвергируют афферентные импульсы, возникающие в различных участках рецептивного поля только одного и того же рефлекса. В отличие от этого в высших отделах ЦНС – в подкорковых ядрах и в коре больших полушарий – наблюдается конвергенция импульсов, исходящих из разных рецепторных зон. Поэтому один и тот же нейрон может возбуждаться импульсами, возникающими при раздражении и слуховых, и зрительных, и кожных рецепторов.

Принцип общего конечного пути. Этот принцип исходит из анатомического соотношения между афферентными и эфферентными нейронами. Количество чувствующих нейронов, приносящих возбуждение ЦНС, в 5 раз больше, чем двигательных. Соотношение между ними будет еще больше, если учесть, что вставочные нейроны являются воспринимающими нейронами в ЦНС. В связи с этим к одному мотонейрону приходит множество импульсов от различных рецепторов, но только некоторые из них приобретают рабочее значение. Таким образом, самые разнообразные стимулы могут быть причиной одной и той же рефлекторной реакции, т.е. происходит борьба за «общий конечный путь». Позднее было показано, что не количественное соотношение путей, а функциональные особенности нервных центров определяют, какой из множества нервных импульсов, сталкивающихся на пути к мотонейрону, окажется победителем и завладеет общим конечным путем. В ответ на множество различных раздражений всегда возникает биологически более значимая для организма реакция.

Принцип обратной связи. Воздействие работающего органа на состояние своего центра получило название обратной связи . Она обеспечивает длительное поддержание активности нервных центров, движение процессов возбуждения, торможения в ЦНС и зависит от постоянного притока вторичных афферентных импульсов. Импульсы, которые возникают в результате деятельности различных органов и тканей, называют, вторичными афферентными импульсами , а импульсы, идущие от рецепторов и вызывающие первичный рефлекторный акт, - первичными рефлекторными импульсами.

Вторичные афферентные импульсы возникают в мышцах, сухожилиях и суставах при осуществлении их деятельности. Они, постоянно поступая ото всех органов тела в ЦНС, способствуют ощущению положения нашего тела без зрительного контроля, обеспечивают поддержание нужного уровня функционирования нейронов в каждый данный момент.

Вторичная афферентная импульсация вносит постоянные поправки в осуществляющийся рефлекторный акт и обеспечивает наиболее тонкое приспособление организма к внешним воздействиям.

Афферентные импульсы, идущие от рабочих органов, способствуют созданию аутогенного (собственного) торможения . Оно возникает в результате поступления в ЦНС афферентных импульсов от рецепторов – сухожильных рецепторов Гольджи. Эти рецепторы приходят в состояние возбуждения при растяжении или сокращении мышц. Возникший ТПСП уменьшает степень активности данного мотонейрона. Величина этих изменений может быть различной. Аутогенное торможение обеспечивает лучшее приспособление мышцы к осуществлению рефлекторного двигательного акта.

Факторы, обеспечивающие возможность координации:

1) Фактор структурно-функциональной связи – это наличие между отделами ЦНС, между ЦНС и различными органами функциональной связи, обеспечивающей преимущественное распространение возбуждения между ними. Прямая связь – управление другим центром или рабочим органом с помощью посылки к ни эфферентных импульсов, ПР: мозжечек посылает импульсы к ядрам ствола мозга. Обратная связь (обратная афферентация ) – управление нервным центром или рабочим органом с помощью афферентных импульсов, поступающих от них. Реципрокная связь – обеспечивает торможение центра – антагониста при возбуждении центра-агониста (мышцы сгибатели и разгибатели).

2) Фактор субординации – подчинение нижележащих отделов ЦНС вышележащим.

3) Фактор силы. Принцип общего конечного пути – в борьбе за общий конечный путь побеждает более сильное возбуждение (более важная команда в биологическом отношении), ПР: при слабом раздражении – рефлекс почесывания, при сильном – оборонительный рефлекс сгибание конечности, при одновременном раздражении возникает только оборонительный рефлекс).

4) Одностороннее проведение возбуждения в химических синапсах упорядочивает распространение возбуждения.

5) Феномен облегчения участвует при выработке навыков – возбуждение быстрее распространяется по проторенным путям, навыки становятся более координированными, ненужные движения постепенно устраняются.

6) Доминанта играет важную роль в процессах координации. Обеспечивает автоматизированное выполнение двигательных актов в процессе трудовой деятельности (доминанта двигательных центров).

Непрерывная смена процессов возбуждения и торможения в корковых клетках определяет цикличность работы отдельных органов и всего организма в целом. Этим объясняется иногда кажущаяся невероятная работоспособность некоторых выдающихся людей; недаром говорят, что гениальность на 90% заключается в высокой трудоспособности, которая во многом зависит от рациональной системы работы. Такую глубоко продуманную систему, как правило, создавали для себя все выдающиеся люди.

Начало изучения торможения в центральной неравной системе связывают с выходом в свет работы И.М. Сеченова "Рефлексы головного мозга", в которой он показал возможность торможения двигательных рефлексов лягушки при химическом раздражении зрительных бугров головного мозга.

Торможение в центральной нервной системе - активный нервный процесс, проявляющийся в подавлении или ослаблении процесса возбуждения.

Центральное торможение (опыт И.М. Сеченова) - процесс, характеризующийся увеличением времени рефлекса или его полным отсутствием, возникающий при раздражении кристалликом поваренной соли поперечного разреза ствола мозга в области зрительных чертогов.

Классический опыт Сеченова заключается в следующем: у лягушки с перерезанным головным мозгом на уровне зрительных бугров определяли время сгибательного рефлекса при раздражении лапки серной кислотой. После этого на зрительные бугры накладывали кристаллик поваренной соли и снова определяли время рефлекса. Оно постепенно увеличивалось, вплоть до полного исчезновения реакции. После снятия кристаллика соли и промывания мозга физиологическим раствором время рефлекса постепенно восстанавливалось. Это позволило говорить о том, что торможение — активный процесс, возникающий при раздражении определенных отделов ЦНС.

Позже И.М. Сеченовым и его учениками было показано, что торможение в ЦНС может возникнуть при нанесении сильного раздражения на любые афферентные пути.

Периферическое торможение открыто братьями Вебер в 1845 г. Они установили, что раздражение блуждающего нерва тормозит работу сердца до полной его остановки.

Виды и механизмы торможения

Благодаря микроэлектродной технике исследования стало возможным изучение процесса торможения на клеточном уровне.

Различают два вида торможения в зависимости от механизмов его возникновения: деполяризационное и гиперполяризационное. Деполяризационное торможение возникает вследствие длительной деполяризации мембраны, а гиперполяризационное - вследствие гиперполяризации мембраны.

Наступлению деполяризационного торможения предшествует состояние возбуждения. Вследствие длительного раздражения это возбуждение переходит в торможение. В основе возникновения деполяризационного торможения лежит инактивация мембраны для натрия, вследствие чего уменьшаются потенциал действия и его раздражающее влияние на соседние участки, в итоге прекращается проведение возбуждения.

Один из видов этого торможения — пессимальное, описанное Н.Е. Введенским (1886), который показал, что возбуждение может сменяться торможением в любом участке, обладающем низкой лабильностью.

Гиперполяризациоиное торможение осуществляется с участием особых тормозных структур и связано с изменением проницаемости мембраны по отношению к калию и хлору, что вызывает увеличение мембранного и порогового потенциалов, в результате чего становится невозможной ответная реакция.

Центральное торможение (опыт И.М. Сеченова): а — двигательный рефлекс на болевой раздражитель; 6 — раснространснне нервных импульсов от тормозных нейронов ствола мозга к спинному мозгу при наложении кристалла NaCI на область зрительных чертогов и отсутствие двигательного рефлекса на болевой раздражитель

Классификация видов торможения ЦНС

Первичное торможение — процесс активации тормозных нейронов, образующих синаптические связи с клеткой, на которую направлено торможение, при этом данный процесс для клетки является первичным, не связанным с ее предварительным возбуждением.

Вторичное торможение — процесс, который развивается в клетке без участия специфических тормозных структур и является следствием ее собственного возбуждения.

Запредельное торможение - истощение нервных клеток при действии раздражителей высокой интенсивности.

Пессималыюе торможение — блокирование высокочастотных импульсов в немиелинизированных нервных терминалях вследствие их более низкой лабильности.

Пресинаптическое торможение - процесс, реализующийся при активации аксо-аксонального тормозного синапса и блокирующий возбуждающие импульсы, направленные на данную клетку.

Постсинантическое торможение - процесс, развивающийся при активации аксо-соматических и аксо-дендритических тормозных синапсов и локализующийся на собственной мембране клетки, на которую направлено торможение.

Рецинрокное торможение — взаимное подавление активности антагонистических нервных структур.

Афферентное коллатеральное торможение - частный случай реципрокного торможения, локализуемый в афферентной части рефлекторной дуги.

Эфферентное коллатеральное (возвратное) торможение — процесс, при котором тормозные вставочные нейроны действуют на те же нервные клетки, которые их активировали, при этом торможение тем сильнее, чем интенсивнее предшествующее возбуждение.

Латеральное торможение — процесс, при котором вставочные тормозные нейроны подавляют активность не только клетки, которая их инициировала, но и других, рядом расположенных.

Латеральное торможение (Т — тормозной нейрон)

Возвратное торможение (Т-тормозной вставочный нейрон (клетка Реншоу); М — мотонейрон)

Рецинрокное торможение (Т — тормозной вставочный нейрон (клетка Реншоу); М — мотонейрон)

Поступательное торможение (Т — тормозной нейрон)

Процессы торможения в центральной нервной системе

Процессы возбуждения и торможения в нервной системе тесно взаимосвязаны.

Торможение — биологический процесс, направленный на ослабление или предотвращение возникновения процесса возбуждения. Впервые идею о том, что в ЦНС помимо процессов возбуждения существует процесс торможения, выдвинул И.М. Сеченов в 1862 г. В опытах на лягушках с неповрежденными зрительными буфами он анализировал время сгибательного рефлекса. При помещении на зрительный бугор кристалликов поваренной соли происходило увеличение времени рефлекса (торможение). В последующем этот вид торможения получил название «сеченовское, или центральное, торможение».

Торможение в ЦНС способствует определенной координации выполняемой функции. При этом блокируется деятельность нейронов и центров, которые в данный момент не требуются для выполнения приспособительной реакции. Кроме того, торможение выполняет и защитную функцию, предохраняя нервные клетки от перевозбуждения и истощения при действии сильных раздражителей.

Различают несколько видов торможения в нервной системе.

Постсипаптическое торможение развивается в случаях, когда тормозной медиатор, выделяемый нервным окончанием, изменяет свойства постсинаптической мембраны таким образом, что нервная клетка не может генерировать потенциал действия. Постсипаптическое торможение может быть обусловлено длительной деполяризацией или гиперполяризацией, возникающей в постсинаптической мембране вследствие взаимодействия медиатора с рецепторами, открывающими калиевые и хлорные каналы. Наиболее распространенными тормозными медиаторами являются гамма-аминомасляная кислота и глицин. Глицин выделяется особыми тормозными клетками (клетки Реншоу) в синапсах, образуемых этими клетками на мембране другого нейрона. Действуя на рецептор постсинаптической мембраны, глицин увеличивает ее проницаемость для ионов СI-, при этом ионы хлора поступают в клетку согласно концентрационному градиенту, в результате чего развивается гиперполяризация. При действии гамма-аминомасляной кислоты на постсинаптическую мембрану постсинаптическое торможение развивается в результате входа ионов хлора в клетку или выхода ионов калия из клетки. Концентрационные градиенты ионов К + в процессе развития торможения нейронов поддерживается Na + /К + -насосом, а ионов СI - — СI - -насосом.

Возвратное постсинаптическое торможение - это такое торможение, при котором тормозные вставочные нейроны (клетки Реншоу) действуют на те же нервные клетки, которые их иннервируют. Примером возвратного постсинаптического торможения может служить торможение в мотонейронах спинного мозга. Этот вид торможения обеспечивает, например, поочередное сокращение и расслабление скелетных мышц — сгибателей и разгибателей, что необходимо для координации движений конечностей при ходьбе.

Латеральное постсинаптическое торможение обусловлено тем, что тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение, называемое латеральным, так как образующаяся зона торможения находится сбоку по отношению к возбужденному нейрону и инициируется им.

Реципрокное торможение , примером которого является торможение нервных центров мышц-антагонистов, заключается в том, что возбуждение проприорецепторов мышц-сгибателей одновременно активирует мотонейроны данных мышц и вставочные тормозные нейроны. Возбуждение вставочных нейронов приводит к постсинаптическому торможению мотонейронов мышц-разгибателей. Если бы возбуждались одновременно центры мышц-сгибателей и мышц- разгибателей, сгибание конечности в суставе было бы невозможно.

Пресинаптическое торможение связано с тем, что в пресинаптическом окончании может развиваться продолжительная деполяризация мембраны, которая приводит к развитию торможения. В очаге деполяризации нарушается процесс распространения возбуждения и импульсы не могут пройти через зону деполяризации. Следовательно, не происходит выделения медиатора в синаптическую щель в достаточном количестве и не возбуждается постсинаптический нейрон. В ЦНС имеется огромное число тормозных нейронов, в частности клетки Реншоу. Эти тормозные нейроны синтезируют специфические тормозные медиаторы и осуществляют реакцию торможения. Активация тормозного нейрона вызывает деполяризацию мембраны терминалей в афферентных нейронах, что затрудняет процесс проведения потенциала действия. Медиатором втакихаксо аксональных синапсах служит гамма-аминомасляная кислота или другой тормозной медиатор. Деполяризация является следствием повышения проницаемости мембраны для ионов хлора, в результате эти ионы выходят из клетки.

Явление центрального торможения было открыто И. М. Сеченовым в 1862 г. Основной его опыт состоял в следующем. У лягушки делали разрез головного мозга на уровне зрительных бугров и удаляли большие полушария. После этого измеряли время рефлекса отдергивания задних лапок при погружении их в раствор серной кисл (методика Тюрка).

Этот рефлекс осуществляется спинномозговыми центрами и его время является показателем возбудимости центров. И. М. Сеченов обнаружил, что если на разрез зрительных бугров (рис. 177 ) наложить кристаллик поваренной соли или нанести слабое электрическое раздражение на эту область мозга, то время рефлекса резко удлиняется. На основании этого факта И. М. Сеченов пришел к заключению, что в таламической области мозга у лягушки существуют нервные центры, оказывающие тормозящие влияния на спинно-мозговые рефлексы.

И. М. Сеченов правильно оценил важное значение открытого им явления центрального торможения и в своих теоретических работах исполь зовал его для объяснения физиологических механизмов поведения человека.

Рис. 177. Головной мозг лягушки и линия разреза его в опыте И. М. Сеченова. 1 - обонятельный нерв; 2 - обонятельная доля; 3 - большие полушария; 4 - зрительный бугор; 5 - линия разреза головного мозга; 6 - двухолмие; 7 - мозжечок; 8 - продолговатый мозг и ромбовидная ямка.

Вскоре были открыты новые факты, демонстрирующис явления торможения в центральной нервной системе . Ф. Гольц показал, что у лягушки рефлекс отдергивания задней лапки в ответ погружение ее в раствор кислоты может быть заторможен одновременным сильным механическим раздражением второй лапки, например сжатием ее пинцетом. Ф. Гольц установил также, что квакательный рефлекс лягушки, наблюдаемый надавливании на боковые стенки туловища, тормозится раздражением лапок.

Ф. Гольц наблюдал торможение спинномозговых рефлексов и после удаления у лягушек таламической области, и поэтому он выступил против представления о существовании в стволе мозга особых тормозящих центров. Гольц считал, что торможение может развиться в любом отделе нейтральной нервной системы при встрече двух или нескольких раздражений, вызывающих различные рефлексы.

Ч. Шеррингтоном, Н. Е. Введенским, А. А. Ухтомским и многими другими исследователями было показано, что торможение играет важную роль в деятельности всех отделов центральной нервной системы.

Приведем некоторые примеры внутрицентрального торможения из работ Ч. Шеррингтона, обстоятельно изучившего закономерности взаимодействия процессов возбуждения и торможения в спинном мозгу млекопитающих животных.

У кошки с удаленными большими полушариями раздражают центральный копец n. popliteus, что вызывает рефлекторное сокращение мышцы разгибателя колена - m. vastus сrureus - противоположной конечности (рис. 178 ). Данный рефлекс имеет длительное последействие. Если во время него нанести второе раздражение на тот же n. popliteus, то возникает торможение ранее вызванного рефлекса и расслабление мышцы.

Рефлекторное сокращение мышцы разгибателя колена можно вызвать раздражением кожи лапы противоположной стороны (перекрестный разгибательный рефлекс). Нанесение сильного раздражения на кожу лапы одноименной стороны сопровождается резким рефлекторным расслаблением этой мышцы вследствие возникшего в центрах торможения (рис. 178 ). Равным образом сгибательныи рефлекс у кошки, вызванный раздражением нерва одноименной стороны, тормозится раздражением нерва или кожи симметричной стороны.

Интенсивность рефлекторного торможения зависит от соотношения силы раздражений - возбуждающего и тормозящего нервный центр.

Если раздражение, вызывающее рефлекс, сильное, а тормозящее раздражение слабое, то интенсивность торможения невелика. При противоположном соотношении силы этих раздражении рефлекс будет полностью заторможен.

Если на нерв наносится несколько слабых тормозящих нервный центр раздражений, то торможение оказывается усиленным, т. е. наблюдается щммация тормозных влияний.
Н. Е. Введенский наблюдал явления торможения в коре больших полушарий головного мозга. В его опытах на фоне раздражения определённой точки двигательной зоны коры одного полушария (это вызывало сгибание одной из лап противоположной стороны тела) раздражалась симетричная точка коры другого полушария. В результате эффект первого раздражения тормозился (согнутая лапа разгибалась).

Крупнейший вклад в учение о центральном торможении внес И. П. Павлов, изучивший торможение условных рефлексов и показавший, что явления торможения имеют важное значение во всех проявлениях высшей нервной деятельности и поведения организма.

По вопросу о механизме центрального торможения высказывались различные, внешне противоречивые представления. Одни исследователи полагали, что в центральной нервной системе существуют особые структуры, специализированные на функции торможения и что торможение по своей физико-химической природе противоположно возбуждению. Другие считали, что торможение в центральной нервной cистеме возникает в результате конфликта нескольких возбуждений или же вследствие чрезмерно сильного или длительного возбуждения («перевозбуждения»), т. е. складывается по механизму пессимума Введеского.

Современные электрофизиологические исследования Дж. Экклса, Д. Пурпуры, П. Г. Костюка и др. позволили установить, что в известной мере правы были как те, так и другие следователи, поскольку в центральной нервной системе существует несколько видов торможения, имеющих разную природу и различную локализацию.

  • Пессимальное торможение в нервных центрах . Торможение деятельности нервной клетки может осуществляться и без участия особых тормозящих структур. В этом случае торможение развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под влиянием слишком частого поступления к ней нервных импульсов. Прообразом такого торможения является в нервно-мышечном соединении. К пессимальпому торможению особенно склонны промежуточные нейроны спинного мозга, нейроны ретикулярной формации и некоторые другие клетки, в которых деполяризация постсинаптической мембраны при частом ритмическом раздражении может быть такой интенсивной и стойкой, что в клетке развивается состояние, подобное катодической .
  • Торможение вслед за возбуждением .
  • Особым видом торможения является торможение, развивающееся в нервной клетке после прекращения ее возбуждения. Оно возникает в том случае, если после окончания вспышки возбуждения в клетке развивается сильная следовая гиперполяризация мембраны. Возбуждающий постсинаптический потенциал в этих условиях оказывается недостаточным для критической деполяризации мембраны, и распространяющееся возбуждение не возникает.