Почкование бактерий. Деление бактериальной клетки

Бактерии самая древняя форма жизни на земле. Появились на планете около 3,8-3,6 миллионов лет назад. Агрессивные климатические условия сделали их выносливыми и стойкими к выживанию. Древнейшим существом будут цианобактерии.

Именно они поспособствовали накоплению в атмосфере кислорода. Наш организм состоит из многочисленных их видов. Различают полезные и вредные типы. Обитают везде: в воде, в воздухе, в человеке и животных существах, в слоях почвы.

Объем колоний зависит не только от строения, но и от того как происходит деление бактерий. Строение примитивное. Аппарат представляется слизистой капсулой или мембраной. Микроорганизм состоит из всего-то одной живой клетки.

В цитоплазме нет митохондрий и пластид. У большинства микробов есть жгутики и усики, с помощью них они и передвигаются по крови, сосудам и тканям. Являются прокариотами, то есть в них нет ядра.

Это значит, что микрочастицы ДНК скапливаются в определенной части цитоплазмы. Имеют название нуклеотиды. Нуклеотиды своеобразный род ядра, в нем то и содержится информация. ДНК хранит сведения в сжатом виде. При ее разворачивании длина достигает 1 мм.

Размножение бактерий происходит путем деления.

Следует знать, что бактерии размножаются только при наличии благоприятных факторов, каких рассмотрим ниже.

Для их роста нужны:

  1. свет;
  2. температура;
  3. наличие кислорода;
  4. влажность;
  5. фактор щелочности и кислотности;

У медиков интерес вызывает температурные условия. Для того, чтобы клетки делились требуется определенная температура. Некоторые классы при очень низкой впадают в состояние анабиоза или спячки, другие же только при высокой не могут продолжить свой рост и разрушаются.

Если одних можно убить кипячением воды, другие прекрасно себя чувствуют, также и с замораживанием. Среди этого предела есть средние условия при которых может осуществляться максимальное развитие с высокой скоростью. Нужная температурная фаза от 23 до 30 градусов, для течения патогенной флоры требуется 38 градусов.

В этой среде плодятся бактериальные простейшие. В идеальных условия прокариоты способны производить 34 триллиона потомков за сутки. Состояние взросления происходит где-то за 20 минут. К счастью живут они не долго, несколько минут или часов.

Что нужно для некоторых микроорганизмов?


Стафилококковая группа нуждается в аргинине и лецитине. Стрептококки в фосфолипидах. Шигеллам, корине бактериям нужна подпитка никотиновая кислота. Золотистый стафилококк, пневмококк, бруцеллез не сможет без витамина Б1, а вот прототрофы сами синтезируют необходимое.

Пути созревания


Как говорилось ранее развитие простейших осуществляется путем деления.

Оно бывает:

  • простым;
  • почкованием;
  • конъюгацией, половым путем;

Простой путь

При первом методе бактерии могут плодиться равновеликим поперечным делением. Материнские клетки после удваивания нитей ДНК и органелл образуют две части, а именно дочерние клетки. Генетический код сформирован аналогично материнскому.

Они как бы клонируют сами себя. В течение суток из одной клеточки выходит 70 поколений. Если предположить, что все они могли жить, масса составила более 5 тонн. Конечно такое невозможно в природе.

Вегетативный этап

Или проще почкование обозначается тем, что существа выращивают на одном из полюсов вторую почку, то есть себя. При ответвлении наступает разрыв нитей ДНК. Именно гетероцисты участвуют в процессе. К такому методу прибегают цианобактерии и колониальные породы.

Таким образом прокариоты могут вырастить до 4 почек, после чего наступает старение и гибель. Кокковые колонии отделяясь свободно идут в рост.

Спорообразование


Есть раздвоение спорами.

Каким образом происходит?

Бациллы репродуцируют себя таким образом при наступлении неблагоприятных условий внешней и внутренней среды. Внутри споры делается особа среда, приостанавливается механизм жизни, уменьшается уровень воды. Если бацилла попала в такое состояние ей не страшен холод, жара, излучения разной этиологии, химические средства.

Как только улучшаются факторы выходят молодые прокариоты. Цикл становится очень длительным. Науке даже известны случаи когда ученые находили простейших, которым десятки, а то и сотни лет.

Половой путь


Конъюгация происходит у бактерий живущих преимущественно в человеческом организме, либо теле животного. Здесь две формы соприкасаются друг с другом и начинается обмен данными. Называется генетическая рекомбинация, образование новых видов.

Половым способом размножаются бактерии кишечной палочки и остальные грамположительные и грамотрицательные типы. Если отсутствует истинное направление то такой обмен между ними является полезным и мочь поспособствовать развитию устойчивости к антибиотикам и другим лекарственным препаратам.

Инциститация


Еще один путь защиты от агрессивных обстоятельств преобразование в цист. Цисты обозначают пузырьки в толстой оболочке. Находится в таком положении бациллы могут очень долго. Даже 200 градусов по Цельсию не уничтожит их. Далее при положительных причинах они выходят наружу делясь бинарно.

Так, что приемы приумножения возбудителей подчиняются внешней среде. Недостаток воды, большое содержание кислорода в воздухе, лишение высокопитательных микроэлементов. Низкие или высокие перепады температур заставляют прибегнуть к спорообразованию, инцистированию.

Степень бактериальной популяции


Живя в благоприятных условиях клетки находятся на исходной стадии, начальной. Средняя продолжительность 1-2 часа. Задержание роста, занимает примерно пару часов. При логарифмическом периоде бациллы могут размножаться в быстром порядке, пик достигается через 6 часов.

Отрицательное ускорение, когда истощаются питательные запасы микроэлементов и веществ. Стационарная ступень, погибшие особи заменяются новыми уже через два часа. Этап ускоренной гибели, бациллы гибнут через каждые 3 часа. Логарифмический фазис, отмечается постоянная смерть, составляет 6 часов.

Снижение скорости смерти, на этом моменте оставшиеся живые клеточки переходят в состояние покоя.

Многоклеточная стадия


Одноклеточная фаза способна делать все функции организма, на это не влияют соседствующие рядом микроорганизмы. Одноклеточные образовывают клеточные агрегаты, они скрепляются слизью.

Часто появляется скопление бацилл в одну ветвь. Так микобактерии развивают цисты, получается своеобразный обмен. Явление служит пред посылом к многоклеточному формированию. К ним относятся цианобактерии, актиномицеты.

Каким требованиям должны отвечать особи:

  1. агрегированностью клеток;
  2. разделением свойств между ними;
  3. установка должного контакта между особями;

У нитчатых особей структура описана в клеточной стенке, создает взаимосвязь между индивидуумами. Обмен у бактерий происходит веществами и энергией. Некоторые нитчатые помимо вегетативных особей содержат дифференциальные гетероцисты или акинеты.

Локализация

В зависимости от разбивки бациллы имеют определенные виды скоплений:

  • шаровидные;
  • спиралевидные;

Первые обнаруживаются в паре или по одному, это диплококки, микрококки, стафилококки. Могут выглядеть как веточки винограда, цепочки. Спиралевидные, разбросаны в хаотичном порядке, к ним причисляются лептоспирозы, вибрио.


Скорость роста бактерий зависит как от внешних условий, так и от физиологических особенностей самой клетки. При наличии благоприятных условий рост бактериальной клетки завершается размножением. Основным способом размножения большинства бактерий является простое деление клетки пополам. Делению предшествует репликация (удвоение) хромосомы. Эти два процесса тесно взаимосвязаны. Частота репликации регулируется скоростью роста клетки. Репликация бактериальной хромосомы осуществляется описанным ранее способом (см. п. 3.2.5).
Изучение закономерности равномерного распределения генетического материала между дочерними клетками, образовавшимися в результате деления материнской клетки, позволило Г. Жакобу, С. Бреннеру и Т. Кузену (1963) сформулировать концепцию репликона. Репликон - единица репликации, это участок ДНК, содержащий регуляторные элементы, необходимые для независимой репликации. У бактерий таковым являются хромосома и плазмиды. Каждый репликон содержит не менее двух локусов, участвующих в контроле репликации: структурный ген-репликатор (ген-инициатор), детерминирующий синтез белка-инициатора и специальный сайт-репликатор, который распознает сигналы на начало удвоения хромосомы.
После некоторого периода роста клетка достигает определенного физиологического состояния. Из цитоплазматической мембраны в репликон поступают сигналы о необходимости репликации хромосомы и готовности клетки к делению. Под влиянием сигналов активизируется деятельность структурного гена и синтезируется белок-инициатор. Он, воздействуя на репликатор, запускает репликацию.
Между системой репликации хромосомы и делением клетки существует координированное взаимодействие: делению клетки всегда предшествует удвоение хромосомы. После завершения репликации начинается процесс деления клетки. У грамположительных бактерий и цианобактерий это осуществляется образованием поперечной перегородки, разделяющей материнскую клетку на две равноценные дочерние.
Деление происходит следующим образом. Вначале
синтезируется двуслойная цитоплазматическая мембрана. Затем на внутренней стороне клеточной стенки образуются два бугорка. Они интенсивно растут и, проникая кольцеобразно внутрь клетки между слоями образовавшейся цитоплазматической мембраны, образуют двойную перегородку, делящую клетку пополам.
Деление большинства грамотр тщательных бактерий
происходит путем перетяжки. При этом геномы расходятся по полюсам клетки, цитоплазматическая мембрана и клеточная стенка растягиваются, впячиваясь от периферии к центру клетки до контакта друг с другом. В результате клетка перешнуровывается на две дочерние. Деление клеток образованием перегородки или перетяжкой получило название бинарного в связи с формированием двух одинаковых дочерних клеток.
Кроме описанного бинарного деления, у бактерий известен другой способ размножения * почкование. Почкованием размножаются бактерии родов Hyphomicrobium, Pedomicrobium и других, объединенных в группу почкующихся бактерий. Эти организмы имеют вид вытянутых палочек (0,5х 2 мкм), иногда грушевидных, оканчивающихся гифами, или простеками (выростами).
Размножение у этих бактерий начинается с образования почки на конце гифы или непосредственно на материнской клетке. Почка разрастается в дочернюю клетку, формирует жгутик и отделяется от материнской клетки. По достижению зрелого состояния жгутик теряется и процесс развития повторяется.
В отличие от бинарного деления при почковании исходная клетка остается материнской, а вновь образованная - дочерней. Между ними имеются морфологические и физиологические различия.
Актиномицеты размножаются фрагментами мицелия и спорами. У одних (род Micromonospora) единичные споры формируются на гифах вегетативного мицелия, у других (род Streptomyces и др.) цепочки спор образуются на концах гиф воздушного мицелия, так называемых конидиеносцах. Фрагменты мицелия и споры в благоприятных условиях влажности, температуры прорастают и дают начало новым организмам.
Нитчатые цианобактерии кроме бинарного деления размножаются участками трихом и гормогониями. Последние представляют собой укороченные нити, состоящие из мелких вегетативных клеток одинаковой формы и размеров. При отмирании средних клеток трихома (нити) гормогонии выскальзывают из чехла материнского трихома, растут, делятся, образуя новые трихомы. Гормогонии, в отличие от материнского трихома, не имеют гетероцист и никогда не окружены чехлом.
Независимо от того, каким путем идет процесс размножения бактерий, скорость этого процесса огромна: за 24 ч может смениться столько поколений, сколько у человека за пять тысяч лет. Скорость размножения зависит от многих условий и для каждого вида бактерий различна. При наличии в среде необходимых питательных веществ, благоприятной температуры и кислотности среды деление каждой клетки может повторяться через 20-30 мин (Е. coli). При такой скорости размножения из одной клетки за сутки возможно образование 472 * 1019 клеток (273, 72 генерации).
Интенсивное размножение имеет для бактерий большое биологическое значение. Оно обеспечивает сохранение микроорганизмов на земной поверхности. При наступлении неблагоприятных условий они погибают массами, но достаточно сохраниться где-нибудь нескольким клеткам, как при подходящих условиях они дадут большое потомство клеток.
Численность популяции микроорганизмов в естественных местообитаниях, например, в почве или воде, постоянно меняется в соответствии с изменением условий существования. Но в лабораторных условиях на питательных средах изменение численности популяции микроорганизмов происходит закономерным образом.

При наличии благоприятных условий бактериальная клетка размножается. Основной способ размножения бактерий – простое деление клетки пополам (бинарное деление). В начале деления клетка удлиняется, затем делится нуклеоид. Нуклеоид представлен суперспирализованной и плотно уложенной молекулой самореплицирующейся ДНК – репликон. Плазмиды также являются репликонами. Репликация ДНК осуществляется при участии ферментов ДНК-полимераз. Процесс начинается в определенной точке ДНК и происходит одновременно в двух противоположных направлениях. Заканчивается репликация также в определенном месте ДНК. В результате репликации количество ДНК в клетке удваивается. Вновь синтезированные молекулы ДНК, состоящие из одной материнской и одной вновь синтезированной цепи, постепенно расходятся в образующиеся дочерние клетки. Считают, что репликация ДНК занимает почти 80% всего времени, затрачиваемого бактериальной клеткой на деление. После завершения репликации ДНК начинается процесс деления клетки. Вначале синтезируется двуслойная цитоплазматическая мембрана, затем между слоями мембраны синтезируется пептидогликан. Заканчивается процесс формированием перегородки.

Во время репликации ДНК и образования делящейся перегородки клетка микроорганизма непрерывно растет. В этот период в клетке активно протекают следующие процессы: синтез пептидогликана клеточной стенки и составляющих цитоплазматической мембраны, образование новых рибосом и других органелл. На последней стадии деления дочерние клетки отделяются друг от друга, однако у некоторых видов бактерий процесс идет не до конца, в результате образуются цепочки клеток (стрептококки, тетракокки и др.). При делении палочковидных бактерий клетки вначале растут в длину. Когда бактерии становятся вдвое длиннее, палочка несколько сужается посередине, а затем распадается на две клетки.

Для некоторых бактерий характерен другой способ размножения – почкование, представляющий собой разновидность бинарного деления. Почкованием размножаются бактерии родов Hyphomicrobium, Pedomicrobium и другие, объединенные в группу почкующихся бактерий. Эти организмы имеют вид вытянутых палочек, иногда грушевидных, оканчивающихся гифами. Размножение у этих бактерий начинается с образования почки на конце гифы или непосредственно на материнской клетке. Почка разрастается в дочернюю клетку, формирует жгутик и отделяется от материнской клетки. По достижении зрелого состояния жгутик теряется, и процесс развития повторяется. Иногда у бактерий наблюдается половой процесс – конъюгация.

В результате роста и размножения из одной клетки микроорганизма образуется колония его потомков. Микроорганизмы отличаются высоким темпом размножения, оцениваемым по времени генерации , т.е. времени, в течение которого происходит деление клетки: за 24 часа иногда сменяется столько поколений, сколько у человека за пять тысяч лет. Скорость размножения зависит от ряда условий и для каждого вида бактерий может быть весьма различной. При наличии в среде необходимых питательных веществ, благоприятной температуре, оптимальной реакции среды деление каждой клетки, например у E. coli, может повторяться через каждые 20-30 мин. При такой скорости размножения из одной клетки за сутки может получиться 472 10 19 клеток (72 генерации). Если принять, что 1 млрд. бактериальных клеток весит 1 мг, то 472 10 19 клеток будут весить 4720 т. такая масса живого вещества могла бы получиться при наличии идеальных условий, исключающих гибель клеток.

Высокая интенсивность размножения обеспечивает сохранение микроорганизмов на земной поверхности: при наступлении неблагоприятных условий они погибают массами, но достаточно сохраниться где-нибудь нескольким клеткам, как при оптимальных условиях они вновь дадут огромное количество организмов.

  • 9. Характеристика эукариотических микроскопических организмов. Отличительные черты простейших, вызывающих инфекционные заболевания.
  • 10. Морфология бактерий. Разнообразие форм. Размеры микроорганизмов. Методы изучения морфологии бактерий. Виды микроскопов.
  • 11. Морфология бактерий. Химический состав бактериальной клетки.
  • 12. Морфология бактерий. Строение и химический состав внешних слоев. Капсула, слизистые слои, чехлы.
  • 13. Морфология бактерий. Клеточная стенка грамположительных и грамотрицательных бактерий. Окраска по Граму.
  • 14. Морфология бактерий. Явление l-трансформации. Биологическая роль.
  • 15. Морфология бактерий. Бактериальная мембрана. Строение мезосом, рибосом. Химический состав цитоплазмы.
  • 16. Морфология бактерий. Запасные включения бактериальной клетки.
  • 17. Движение бактерий. Строение жгутика, толщина, длина, химический состав. Приготовление фиксированных препара-тов и препаратов живых клеток микроорганизмов.
  • 18. Движение бактерий. Виды расположения жгутиков. Функции фимбрий и пилей.
  • 19. Движение бактерий. Характер движения бактериальной клетки. Виды таксисов.
  • 20. Бактериальное ядро. Строение, состав. Характеристика днк.
  • 21. Бактериальное ядро. Особенности генетической системы бактерии. Типы репликации днк бактерии.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.
  • 23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.
  • 24. Бактериальное ядро. Плазмиды. Биологическая роль, отличия от вирусов, виды плазмид.
  • 25. Морфологическая дифференцировка прокариот. Формы клеток. Покоящиеся формы. Процесс поддержания состояния покоя.
  • 26. Морфологическая дифференцировка прокариот. Строение эндоспоры. Химический состав, слои.
  • 27. Морфологическая дифференцировка прокариот. Биохимические и физиологические изменения в процессе прорастания эндоспроры. Факторы устойчивости эндоспор в окружающей среде.
  • 28. Морфологическая дифференцировка прокариот. Формирование споры, слои эндоспоры.
  • 29. Классификация и систематика бактерий. Классификация бактерий по Берджи. Признаки, используемые при описании бактерий. Характеристика основных групп бактерий по классификатору Берджи.
  • 30. Классификация и систематика бактерий. Категории бактерий. Особенности эубактерий и архебактерий.
  • 31. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
  • 32. Влияние физических факторов на микроорганизмы. Температура. Способность к росту при различных температурных условиях.
  • 33. Влияние физических факторов на микроорганизмы. Температура. Способность к выживанию в экстремальных температурных условиях.
  • 34. Влияние физических факторов на микроорганизмы. Влажность.
  • 35. Влияние физических факторов на микроорганизмы. Давление. Осмотическое давление. Атмосферное. Гидростатическое давление и вакуум.
  • 36. Влияние физических факторов на микроорганизмы. Лучистая энергия, уфл, ультразвук.
  • 37. Влияние химических факторов на микроорганизмы. Кислотность и щелочность. Поваренная соль.
  • 38. Влияние химических факторов на микроорганизмы. Антисептики, виды и воздействие на микроорганизмы.
  • 39. Влияние биологических факторов на микроорганизмы. Антибиоз. Виды взаимоотношений – антагонизм, паразитизм, бактериофаги.
  • 40. Влияние биологических факторов на микроорганизмы. Взаимоотношения бактерий с другими организмами. Симбиоз. Виды и примеры симбиоза.
  • 41. Принципы консервирования пищевых продуктов, основанные на методах воздействия на бактерии различных факторов внешней среды. Влияние антибиотиков.
  • 42. Питание микроорганизмов. Ферменты микроорганизмов. Классы и виды ферментов. Пути катаболизма.
  • 43. Питание микроорганизмов. Механизмы транспорта питательных веществ в клетку. Пермеазы, ионофиоры. Характеристика процессов симпорта и антипорта. Транспорт железа.
  • 45. Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности.
  • 50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы
  • 51. Метаболизм бактерий. Фотосинтез. Виды фотосинтезирующих бактерий. Фотосинтетический аппарат.
  • 53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
  • 54. Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов.
  • 56. Биосинтетические процессы. Ассимиляция различных веществ.
  • 57. Биосинтетические процессы. Образование вторичных метаболитов. Виды антибиотиков. Механизм действия.
  • 58. Биосинтетические процессы. Образование вторичных метаболитов. Токсинообразование. Виды токсинов.
  • 59. Биосинтетические процессы. Образование вторичных метаболитов. Витамины, сахара, ферменты.
  • 60. Регуляция метаболизма. Уровни регуляции метаболизма. Индукция. Репрессия.
  • 62. Основы экологии микроорганизмов. Экология микробных сообществ.
  • 63. Основы экологии микроорганизмов. Микроорганизмы воздуха.
  • 64. Основы экологии микроорганизмов. Микроорганизмы морских водных экосистем.
  • 65. Основы экологии микроорганизмов. Микроорганизмы солоноватых водных экосистем.
  • 66. Основы экологии микроорганизмов. Микроорганизмы пресноводных экосистем.
  • 67. Основы экологии микроорганизмов. Микроорганизмы почвенных экосистем.
  • 68. Основы экологии микроорганизмов. Микроорганизмы почв. Микориза.
  • 69. Основы экологии микроорганизмов. Круговорот углерода, водорода и кислорода.
  • 70. Основы экологии микроорганизмов. Круговорот азота, фосфора и серы.
  • 71. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Ротовая полость. Бактериальные заболевания.
  • 72. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Проблема дисбактериоза.
  • 73. Основы экологии микроорганизмов. Симбионты организма человека. Дыхательные пути, выделительная, половая система.
  • 74. Основы экологии микроорганизмов. Симбионты организма человека. Кожа, конъюктива глаза, ухо.
  • 75. Инфекция. Патогенные микроорганизмы. Их свойства. Вирулентность микроорганизмов.
  • 76. Инфекция. Инфекционный процесс. Виды инфекций. Формы инфекций. Локализация возбудителя. Входные ворота.
  • 79. Инфекция. Роль макроорганизма в развитии инфекционного процесса.
  • 81. Классификация инфекций. Особо опасные инфекции. Кишечные инфекции, аэрогенные инфекции, детские инфекции.
  • 82. Пищевые отравления и токсикоинфекции. Причины возникновения. Основные клинические симптомы.
  • 83. Пищевые токсикоинфекции. Возбудитель – бактерии рода Salmonella.
  • 84. Пищевые токсикоинфекции. Возбудитель – бактерии рода Escherichium и Shigella.
  • 85. Пищевые токсикоинфекции. Возбудитель – бактерии рода Proteus.
  • 86. Пищевые токсикоинфекции. Возбудитель – бактерии рода Vibrio.
  • 87. Пищевые токсикоинфекции. Возбудитель – бактерии рода Bacillus и Clostridium.
  • 88. Пищевые токсикоинфекции. Возбудитель – бактерии рода Enterococcus и Streptococcus.
  • 89. Пищевые токсикозы. Возбудитель – бактерии рода Clostridium.
  • 90. Пищевые токсикозы. Возбудитель – бактерии рода Staphylococcus.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.

    Виды деления:

    1. Равновеликое бинарное поперечное деление , приводящее к образованию двух одинаковых дочерних клеток. При таком способе деления имеет место симметрия в отношении продольной и поперечной оси. При равновеликом бинарном делении материнская клетка, делясь, дает начало двум дочерним клеткам и сама, таким образом, исчезает.

    2. Неравновеликое бинарное деление, или почкование . При почковании на одном из полюсов материнской клетки образуется маленький вырост (почка), увеличивающийся в процессе роста. Постепенно почка достигает размеров материнской клетки, после чего отделяется от последней. Клеточная стенка почки полностью синтезируется заново. В процессе почкования симметрия наблюдается в отношении только продольной оси. При почковании материнская клетка дает начало дочерней клетке, и между ними можно в большинстве случаев обнаружить морфологические и физиологические различия: есть старая материнская клетка и новая дочерняя.

    3. Размножение путем множественного деления , характерное для одной группы одноклеточных цианобактерий, в результате образуются мелкие клетки, получивших название баеоцитов (греч. bae – маленькая, cyto – клетка), число которых у разных видов колеблется от 4 до 1000. Освобождение баеоцитов происходит путем разрыва материнской клеточной стенки. В основе множественного деления лежит принцип равновеликого бинарного деления. Отличие заключается в том, что в этом случае после бинарного деления не происходит роста образовавшихся дочерних клеток, а они снова подвергаются делению.

    23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.

    Формы обмена генетическим материалом у бактерий:

    1. по горизонтали

    * трансформация – перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чужеродной ДНК.

    А) Индуцированная (искусственно получаемая) трансформация происходит при добавлении к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре.

    Б) Спонтанная трансформация происходит в естественных условиях и проявляется в возникновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, выделяющейся клетками в окружающую среду вследствие их лизиса или в результате активного выделения ДНК жизнеспособными клетками-донорами.

    * сексдукция

    * трансфекция – вариант трансформации бактериальных клеток, лишенных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой. С помощью трансфекции удается вызвать у таких бактерий (без клеточной стенки) вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактериальными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток, или воспроизводить вирионы, или самостоятельно реплицироваться.

    * конъюгация – процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и реципиента. Этот процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном (tra – от англ., transfer – перенос).

    Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление поверхностного исключения. Аппаратом переноса являются специальные донорные ворсинки, с помощью которых устанавливается контакт между конъюгирующими клетками. Донорные ворсинки представляют собой длинные (1-20 мкм) тонкие трубчатые структуры белковой природы с внутренним диаметром около 3 нм.

      установление контакта между донором и реципиентом

      протаскивание нити ДНК от донора к реципиенту

      достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке

      рекомбинация между переданной хромосомой (ее фрагментами) и хромосомой клетки-реципиента

      размножение мерозиготы

      образование клеток, несущих признаки донора и реципиента

    Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим примером конъюгативной плазмиды является половой фактор, или F-плазмида (от англ. fertility – плодовитость). F-плазмида может находиться как в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором Р~-клетка (клетка, лишенная F-плазмиды) превращается в Р+-клетку (клетку, содержащую F-плазмиду). F-плазмида может интегрироваться в определенные участки бактериальной хромосомы, в этом случае она станет контролировать конъюгативный перенос хромосомы клетки.

    Таким образом, конъюгация начинается с установления контакта между донором и реципиентом с помощью донорной ворсинки. Последняя смыкается с рецептором клеточной мембраны клетки-реципиента. Нередко такой контакт устанавливается не только между двумя клетками, а между многими клетками, образуя агрегаты спаривания. Предполагают, что нить ДНК в процессе конъюгации протаскивается через канал донорной ворсинки. Поскольку донорный мостик является непрочным, процесс конъюгации может в любой момент прерваться. Поэтому при конъюгации может переноситься или часть хромосомы, или, реже, – полная хромосома. С помощью F-плазмид частота переноса генов между бактериями существенно возрастает.

    * трансдукция - перенос генетического материала от клетки-донора клетке-реципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую.

    А) Неспецифическая трансдукция - случайный перенос фрагментов ДНК от одной бактериальной клетки к другой.

    Б) Специфическая трансдукция осуществляется только умеренными фагами, способными включаться в строго определенные участки хромосомы бактериальной клетки и переносить определенные гены.

    Молекулярные механизмы изменчивости бактерий

    Бактерии в силу относительной простоты их организации и короткого срока жизни подвергаются изменчивости быстрее, чем многие другие организмы. В основе их изменчивости лежат мутации и генетические рекомбинации, особенно протекающие с участием транспонируемых элементов.

    *Мутации – изменения в генотипе, которые стабильно наследуются. Мутации могут быть спонтанными или индуцированными.

    а) Спонтанные мутации возникают без каких-либо специальных воздействий, они происходят в результате ошибок при репликации и репарации. Средняя частота спонтанных мутаций составляет около 1 106 (один мутант на 1 млн. клеток).

    б) Индуцированные мутации происходят с гораздо большей частотой, они возникают в результате воздействия различных мутагенов – физических и химических факторов, повреждающих ДНК: ионизирующая радиация, УФ облучение, различные аналоги оснований ДНК, алкилирующие соединения, акридины, антибиотики

    в) Точечные мутации могут быть обусловлены: заменой оснований, выпадением (делецией) основания, появлением дополнительного основания (вставки). Точечные мутации могут иметь три последствия:

    1) замена одного кодона на другой, а стало быть, одной аминокислоты на другую;

    2) сдвиг рамки считывания, что приведет к изменению целой серии последовательностей аминокислотных остатков;

    3)возникновение «бессмысленного» кодона, что приведет к прекращению трансляции в данной точке

    синтез белка может быть полностью заблокирован. Будет синтезироваться измененный белок

    Все это приведет либо к утрате какого-то фенотипического признака у мутанта, либо, реже, к появлению у него нового признака.

    Нарушение генома может быть следствием:

    *протяженных делеций

    *инверсии (поворот сегмента хромосомы на 180°)

    *транслокации (перемещение участка хромосомы из одной позиции в другую)

    Все это также будет приводить к изменению и нарушению различных функций клетки (организма).

    Большая роль в изменчивости бактерий и других организмов принадлежит так называемым транспонируемым генетическим элементам, то есть генетическим структурам, способным в интактной форме перемещаться внутри данного генома или переходить от одного генома к другому, например от плазмидного генома к бактериальному и наоборот. Различают три класса транспонируемых элементов: IS-элементы, транспозоны и эписомы.

    #Вставочные последовательности (от англ, insertion sequence), имеют обычно размеры, не превышающие 2 тыс. пар оснований, или 2 к.б. (килобаза – тысяча пар оснований). IS-элементы несут только один ген, кодирующий белок транспозазу, с помощью которой IS-элементы встраиваются в различные участки хромосомы. Их обозначают цифрами: IS1, IS2, IS3 и т. д.

    #Транспозоны представляют собой более крупные сегменты ДНК, фланкированные инвертированными IS-элементами. Способны встраиваться в различные участки хромосомы или переходить из одного генома в другой, т. е. ведут себя как IS-элементы. Помимо генов, обеспечивающих их перемещение, они содержат и другие гены, например гены лекарственной устойчивости. Транспозоны обнаружены в геномах плазмид, вирусов, прокариот и эукариот и их, как и IS-элементы, обозначают порядковым номером: Tп1, Тп2, ТпЗ и т. д.

    # К эписомам относятся еще более крупные и сложные саморегулирующиеся системы, содержащие IS-элементы и транспозоны и способные реплицироваться в любом из двух своих альтернативных состояний – автономном или интегрированном – в хромосому клетки-хозяина. К эписомам относят различные умеренные лизогенные фаги; они отличаются от всех других транспонируемых элементов наличием собственной белковой оболочки и более сложным циклом репродукции. Собственно эписомы – это вирусы, обладающие, подобно другим транспонируемым элементам, способностью в интактной форме переходить из одного генома в другой.

    Бактерии - это очень простая форма растительной жизни, которая состоит из одной живой клетки. Размножение осуществляется делением клетки. При достижении стадии зрелости бактерия делится на две равные клетки . В свою очередь каждая из этих клеток достигает зрелости и также делится на две равные клетки. В идеальных условиях бактерия достигает состояния зрелости и размножается менее чем за 20-30 минут. При такой скорости размножения одна бактерия теоретически может произвести 34 триллиона потомков за 24 часа! К счастью, жизненный цикл бактерий относительно короток и продолжается от нескольких минут до нескольких часов. Поэтому даже в идеальных условиях они не могут размножаться с такой скоростью.

    Скорость роста и размножения бактерий и других микроорганизмов зависит от условий окружающей среды. Температура, свет, наличие кислорода, влажность и рН-фактор (уровень кислотности или щелочности) наряду с наличием питания влияют на скорость развития бактерий. Из них особый интерес у техников и инженеров вызывает температура. Для каждой разновидности бактерий существует минимальная температура, при которой они могут развиваться. При температуре ниже данного порога бактерии впадают в спячку и не способны к воспроизводству. Точно так же для каждой разновидности бактерий существует порог максимальной температуры. При температуре выше этого предела бактерии разрушаются. Между этими пределами находится оптимальная температура, при которой бактерии размножаются с максимальной скоростью. Оптимальная температура для большинства бактерий, которые питаются пометом животных и мертвой тканью животных и растений (сапрофиты), от 24 до 30°С. Оптимальная температура для большинства бактерий, которые являются причиной инфекций и болезней носителя (патогенные бактерии), около 38°С. В большинстве случаев можно значительно снизить скорость размножения бактерий , если окружающей среды. Наконец, существует несколько разновидностей бактерий, которые лучше всего чувствуют себя при температуре воды, в то время как другие - при температуре ее замерзания.

    Дополнение к изложенному выше

    Происхождение, эволюция, место в развитии жизни на Земле

    Бактерии наряду с археями были одними из первых живых организмов на Земле, появившись около 3,9-3,5 млрд лет назад. Эволюционные взаимоотношения между этими группами ещё до конца не изучены, есть как минимум три основные гипотезы: Н. Пэйс предполагает наличие у них общего предка протобактерии, Заварзин считает архей тупиковой ветвью эволюции эубактерий, освоившей экстремальные местообитания; наконец, по третьей гипотезе археи - первые живые организмы, от которых произошли бактерии.

    Эукариоты возникли в результате симбиогенеза из бактериальных клеток намного позже: около 1,9-1,3 млрд лет назад. Для эволюции бактерий характерен ярко выраженный физиолого-биохимический уклон: при относительной бедности жизненных форм и примитивном строении, они освоили практически все известные сейчас биохимические процессы. Прокариотная биосфера имела уже все существующие сейчас пути трансформации вещества. Эукариоты, внедрившись в неё, изменили лишь количественные аспекты их функционирования, но не качественные, на многих этапах элементов бактерии по-прежнему сохраняют монопольное положение.

    Одними из древнейших бактерий являются цианобактерии. В породах, образованных 3,5 млрд лет назад, обнаружены продукты их жизнедеятельности - строматолиты, бесспорные свидетельства существования цианобактерий относятся ко времени 2,2-2,0 млрд лет назад. Благодаря ним в атмосфере начал накапливаться кислород, который 2 млрд лет назад достиг концентраций, достаточных для начала аэробного дыхания. К этому времени относятся образования, свойственные облигатно аэробной Metallogenium.

    Появление кислорода в атмосфере нанесло серьёзный удар по анаэробным бактериям. Они либо вымирают, либо уходят в локально сохранившиеся бескислородные зоны. Общее видовое разнообразие бактерий в это время сокращается.

    Предполагается, что из-за отсутствия полового процесса, эволюция бактерий идёт по совершенно иному механизму, нежели у эукариот. Постоянный горизонтальный перенос генов приводит к неоднозначностям в картине эволюционных связей, эволюция протекает крайне медленно (а, возможно, с появлением эукариот и вовсе прекратилась), зато в изменяющихся условиях происходит быстрое перераспределение генов между клетками при неизменном общем генетическом пуле.

    Строение

    Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны. По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже - звёздчатыми, тетраэдрическими, кубическими, C- или O-образными. Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы, то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

    Из обязательных клеточных структур выделяют три:

    • нуклеоид
    • рибосомы
    • цитоплазматическая мембрана (ЦПМ)
    С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки). ЦПМ и цитоплазму объединяют вместе в понятие протопласт.

    Строение протопласта

    ЦПМ ограничивает содержимое клетки (цитоплазму) от внешней среды. Гомогенная фракция цитоплазмы, содержащая набор растворимых РНК, белков, продуктов и субстратов метаболических реакций, названа цитозолем. Другая часть цитоплазмы представлена различными структурными элементами.

    Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, строго говоря, отсутствие вообще внутрицитоплазматических мембран, не являющихся производными ЦПМ. Однако у разных групп прокариот (особенно часто у грамположительных бактерий) имеются локальные впячивания ЦПМ - мезосомы, выполняющие в клетке разнообразные функции и разделяющие её на функционально различные части. У многих фотосинтезирующих бактерий существует развитая сеть производных от ЦПМ фотосинтетических мембран. У пурпурных бактерий они сохранили связь с ЦПМ, легко обнаруживаемую на срезах под электронным микроскопом, у цианобактерий эта связь либо трудно обнаруживается, либо утрачена в процессе эволюции. В зависимости от условий и возраста культуры фотосинтетические мембраны образуют различные структуры - везикулы, хроматофоры, тилакоиды.

    Вся необходимая для жизнедеятельности бактерий генетическая информация содержится в одной ДНК (бактериальная хромосома), чаще всего имеющей форму ковалентно замкнутого кольца (линейные хромосомы обнаружены у Streptomyces и Borrelia). Она в одной точке прикреплена к ЦПМ и помещается в структуре, обособленной, но не отделённой мембраной от цитоплазмы, и называемой нуклеоид. ДНК в развёрнутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, то есть практически все прокариоты гаплоидны, хотя в определённых условиях одна клетка может содержать несколько копий своей хромосомы, а Burkholderia cepacia имеет три разных кольцевых хромосомы (длиной 3,6; 3,2 и 1,1 млн пар нуклеотидов). Рибосомы прокариот также отличны от таковых у эукариот и имеют константу седиментации 70 S (80 S у эукариот).

    Помимо этих структур, в цитоплазме также могут находиться включения запасных веществ.

    Клеточная оболочка и поверхностные структуры

    Клеточная стенка - важный структурный элемент бактериальной клетки, однако необязательный. Искусственным путём были получены формы с частично или полностью отсутствующей клеточной стенкой (L-формы), которые могли существовать в благоприятных условиях, однако иногда утрачивали способность к делению. Известна также группа природных не содержащих клеточной стенки бактерий - микоплазм.

    У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам.

    Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20-80 нм, построенный в основном из пептидогликана с меньшим количеством тейхоевых кислот и небольшим количеством полисахаридов, белков и липидов (так называемый липополисахарид). В клеточной стенке имеются поры диаметром 1-6 нм, которые делают её проницаемой для ряда молекул.

    У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружён наружной мембраной, имеющей, как правило, неровную, искривлённую форму. Между ЦПМ, слоем пептидогликана и внешней мембраной имеется пространство, называемое периплазматическим, и заполненное раствором, включающим в себя транспортные белки и ферменты.

    С внешней стороны от клеточной стенки может находиться капсула - аморфный слой, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру. Однако между этими тремя идеализированными случаями есть множество переходных форм.

    Бактериальных жгутиков может быть от 0 до 1000. Возможны как варианты расположения одного жгутика у одного полюса (монополярный монотрих), пучка жгутиков у одного (монополярный перитрих или лофотрихиальное жгутикование) или двух полюсов (биполярный перитрих или амфитрихиальное жгутикование), так и многочисленные жгутики по всей поверхности клетки (перитрих). Толщина жгутика составляет 10-20 нм, длина - 3-15 мкм. Его вращение осуществляется против часовой стрелки с частотой 40-60 об/с.

    Помимо жгутиков, среди поверхностных структур бактерий необходимо назвать ворсинки. Они тоньше жгутиков (диаметр 5-10 нм, длина до 2 мкм) и необходимы для прикрепления бактерии к субстрату, принимают участие в метаболитов, а особые ворсинки - F-пили -нитевидные образования, более тонкие и короткие (3-10 нм х 0, 3-10 мкм), чем жгутики - необходимы клетке-донору для передачи реципиенту ДНК при конъюгации.

    Размеры

    Размеры бактерий в среднем составляют 0,5-5 мкм. Escherichia coli, например, имеет размеры 0,3-1 на 1-6 мкм, Staphylococcus aureus - диаметр 0,5-1 мкм, Bacillus subtilis 0,75 на 2-3 мкм. Крупнейшей из известных бактерий является Thiomargarita namibiensis, достигающая размера в 750 мкм (0,75 мм). Второй является Epulopiscium fishelsoni имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus. Achromatium oxaliferum достигает размеров 33 на 100 мкм, Beggiatoa alba - 10 на 50 мкм. Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм. В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1-0,25 мкм, что соответствует размеру крупных вирусов, например, табачной мозаики, коровьей оспы или гриппа. По теоретическим подсчётам сферическая клетка диаметром менее 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не помещаются все необходимые биополимеры и структуры в достаточном количестве.

    Однако были описаны нанобактерии, имеющие размеры меньше «допустимых» и сильно отличающиеся от обычных бактерий. Они, в отличие от вирусов, способны к самостоятельному росту и размножению (чрезвычайно медленным). Они пока мало изучены, живая их природа ставится под сомнение.

    При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём - пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой. Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных. Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.

    Многоклеточность у бактерий

    Одноклеточные формы способны осуществлять все функции, присущие организму, независимо от соседних клеток. Многие одноклеточные прокариоты склонны к образованию клеточных , часто скреплённых выделяемой ими слизью. Чаще всего это лишь случайное объединение отдельных организмов, но в ряде случаев временное объединение связано с осуществлением определённой функции, например, формирование плодовых тел миксобактериями делает возможным развитие цист, при том что единичные клетки не способны их образовывать. Подобные явления наряду с образованием одноклеточными эубактериями морфологически и функционально дифференцированных клеток - необходимые предпосылки для возникновения у них истинной многоклеточности.

    Многоклеточный организм должен отвечать следующим условиям:

    • его клетки должны быть агрегированы,
    • между клетками должно осуществляться разделение функций,
    • между агрегированными клетками должны устанавливаться устойчивые специфические контакты.
    Многоклеточность у прокариот известна, наиболее высокоорганизованные многоклеточные организмы принадлежат к группам цианобактерий и актиномицетов. У нитчатых цианобактерий описаны структуры в клеточной стенке, обеспечивающие контакт двух соседних клеток - микроплазмодесмы. Показана возможность обмена между клетками веществом (красителем) и энергией (электрической составляющей трансмембранного потенциала). Некоторые из нитчатых цианобактерий содержат помимо обычных вегетативных клеток функционально дифференцированные: акинеты и гетероцисты. Последние осуществляют фиксацию азота и интенсивно обмениваются метаболитами с вегетативными клетками.

    Размножение бактерий

    Некоторые бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием. Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток). Для обеспечения необходимой для эволюции и приспособления к изменчивой окружающей среде пластичности генотипа у них существуют иные механизмы.

    При делении большинство грамположительных бактерий и нитчатых цианобактерий синтезируют поперечную перегородку от периферии к центру при участии мезосом. Грамотрицательные бактерии делятся путём перетяжки: на месте деления обнаруживается постепенно увеличивающееся искривление ЦПМ и клеточной стенки внутрь. При почковании на одном из полюсов материнской клетки формируется и растёт почка, материнская клетка проявляет признаки старения и обычно не может дать более 4 дочерних. Почкование имеется у разных групп бактерий и, предположительно, возникало несколько раз в процессе эволюции.

    У бактерий наблюдается и половое размножение, но в самой примитивной форме. Половое размножение бактерий отличается от полового размножения эукариот тем, что у бактерий не образуются гаметы и не происходит слияния клеток. Однако главнейшее событие полового размножения, а именно обмен генетическим материалом, происходит и в этом случае. Этот процесс называется генетической рекомбинацией. Часть ДНК (очень редко вся ДНК) клетки-донора переносится в клетку-реципиент, ДНК которой генетически отличается от ДНК донора. При этом перенесённая ДНК замещает часть ДНК реципиента. В процессе замещения ДНК участвуют ферменты, расщепляющие и вновь соединяющие цепи ДНК. При этом образуется ДНК, которая содержит гены обеих родительских клеток. Такую ДНК называют рекомбинантной. У потомства или рекомбинантов, наблюдается заметное разнообразие признаков, вызванное смещением генов. Такое разнообразие признаков очень важно для эволюции и является главным преимуществом полового размножения. Известны 3 способа получения рекомбинантов. Это - в порядке их открытия - трансформация, конъюгация и трансдукция.