Что такое космические ресурсы. Климатические и космические ресурсы земли

КЛИМАТИЧЕСКИЕ И КОСМИЧЕСКИЕ РЕСУРСЫ - РЕСУРСЫ БУДУЩЕГО

Солнце - гигантский термоядерный реактор, первоисточник не только всей жизни на Земле, но практически и всех ее энергоресурсов. Годовой поток солнечной энергии, достигающий нижних слоев атмосферы и земной поверхности, измеряется такой огромной величиной (10 14 кВт), которая в десятки раз превосходит всю энергию, содержащуюся в разведанных запасах минерального топлива, и в тысячи раз - современный уровень мирового энергопотребления. Естественно, что наилучшие условия для использования солнечной энергии существуют в аридном поясе Земли, где продолжительность солнечного сияния наибольшая.

Таблица 17. Климатические и космические ресурсы.

Источник энергии Районы использования
Энергия солнца Аридный пояс: США (Флорида, Калифорния); Япония, Израиль, Кипр, Австралия, Украина (Крым), Кавказ, Казахстан, Ср. Азия.
Ветровая энергия Побережье Северного и Балтийского морей, арктических морей; Ср. Сибирь, Дальний Восток, юг европейской части России, Украина.
Геотермальные Низкотемпературные (обогрев): Исландия, Италия, Франция, Венгрия, Япония, США, страны Центральной Америки, Ню Зеландия, Камчатка С.Кавказ;высокотемпературные (сухой пар для сооружения ГеоТЭС): Италия, США (Калифорния), Мексика, Н.Зеландия, Япония, Россия (Камчатка).
Приливная энергия Бретань (Франция) - побережье Ла-Манша, Белое море, юг Китая, залив Фанди (побережье США и Канады) и т.д. Продолжаются работы в США, Канаде, Великобритании, Франции, России, Китае, Респ. Корее, Индии, Аргентине, Австралии.
Энергия течений (ОТЭС) Гавайи (США), Науру (Япония), Таити (Франция), Бали (Нидерланды).
Энергия волн Япония, Норвегия

Ветровая энергия, которую человек также издавна использовал с помощью ветряных мельниц и парусных судов, как и солнечная, обладает практически неисчерпаемым потенциалом, относительно дешева и не загрязняет окружающую среду. Но она очень непостоянна во времени и в пространстве и ее очень трудно "приручить". В отличие от солнечной, ее ресурсы сосредоточены главным образом в умеренном поясе.

Особый вид климатических ресурсов образуют агроклиматические ресурсы - тепло, влага и свет. Географическое распределение этих ресурсов находит отражение на агроклиматической карте.

Задачи и тесты по теме "Климатические и космические ресурсы - ресурсы будущего"

  • Природные ресурсы
  • Климатические пояса Земли - Общая характеристика природы Земли 7 класс

    Уроков: 5 Заданий: 9 Тестов: 1

  • Латинская Америка - Южная Америка 7 класс

    Уроков: 3 Заданий: 9 Тестов: 1

  • США - Северная Америка 7 класс

    Уроков: 6 Заданий: 9 Тестов: 1

  • Астероиды. Кометы. Метеоры. Метеориты - Земля во Вселенной 5 класс

    Уроков: 4 Заданий: 8 Тестов: 1

Ведущие идеи: географическая среда - необходимое условие жизни общества, развития и размещения населения и хозяйства, при этом в последнее время снижается влияние ресурсного фактора на уровень экономического развития страны, но возрастает значение рационального использования природных ресурсов и экологического фактора.

Основные понятия: географическая (окружающая) среда, рудные и нерудные полезные ископаемые, рудные пояса, бассейны полезных ископаемых; структура мирового земельного фонда, южный и северный лесные пояса, лесистость; гидроэнергетический потенциал; шельф, альтернативные источники энергии; ресурсообеспеченность, природно-ресурсный потенциал (ПРП), территориальное сочетание природных ресурсов (ТПСР), районы нового освоения, вторичные ресурсы; загрязнение окружающей среды, экологическая политика.

Навыки и умения: уметь давать характеристику природных ресурсов страны (региона) по плану; использовать различные методы экономической оценки природных ресурсов; давать характеристику природных предпосылок для развития промышленности, сельского хозяйства страны (региона) по плану; давать краткую характеристику размещения основных видов природных ресурсов, выделять страны "лидеры" и "аутсайдеры" по обеспеченности тем или иным видом природных ресурсов; приводить примеры стран, не обладающих богатыми природными ресурсами, но достигших высокого уровня экономического развития и наоборот; приводить примеры рационального и нерационального использования ресурсов.

Исследование UNSW показало, что для отдельно взятого, богатого железом астероида, учитывая существование рынка и других предположений, инвестиции будут отбиты за 85 лет, если руда будет отправляться на Землю, и всего 5 лет, если будет использоваться в космосе.

Не так уж и дорого

Несмотря на всю эту деятельность, скептики сомневаются в перспективах космической горнопромышленности с точки зрения денежных и временных затрат. Очевидно, добыча ресурсов в космосе будет дорогостоящим делом. Общий бюджет проекта, в рамках которого « » отправили на Марс и содержали в течение 14 лет, составил 2,5 миллиарда долларов.

Но добывать ресурсы на Земле тоже недешево. Затраты на разработку и добычу исчисляются сотнями миллионов долларов. Эти деньги компании тратят, пытаясь найти новые земные месторождение. Добыча ископаемых ресурсов растягивается на десятки лет. Временные и затратные рамки будут сопоставимы с космическими. Почему бы просто не начинать выходить в космос и добывать ресурсы там? Этому быть. С чего начинать? Начнем с исследования, которое подсказывает, что использовать железную руду в космосе гораздо проще, чем возвращать ее на Землю (если считать, что в космосе есть рынок).

Для дорогостоящих товаров вроде редкоземельных минералов или металлов платиновой группы можно рассмотреть возможность отправки на Землю, но «обычные» ресурсы, которые можно добывать в космосе, лучше использовать там же.

Распространенный аргумент сводится к тому, что запуск груза с Земли в космос обходится в 20 000 долларов за килограмм, поэтому если произвести этот килограмм в космосе дешевле, чем за 20 000 долларов, можно здорово сэкономить и выйти в плюс.

SpaceX, например, публикует свои затраты на запуск на сайте. В настоящее время для Falcon 9 эта цифра составляет 12 600 долларов. Но пока рынка как такового нет и, возможно, понадобится его искусственно подтолкнуть (к примеру, NASA может заключить контракт на доставку воды на орбите). Без такого толчка, начальный спрос на воду может появиться в сфере космического туризма, но более вероятно, что активнее будет развиваться сфера дозаправки спутников. Воду можно расщеплять на кислород и водород, используя их затем в качестве топлива для спутников.

Мир во всем мире или «дикий запад»?

Если говорить о мире во всем мире, есть ряд проблем с Законом США о космосе, поскольку он не согласуется с существующими договорами и, скорее всего, будет игнорироваться в других странах, не имея, соответственно, законной силы. Но с течением времени медленные процессы наконец поставят все в законные рамки. И все же, прежде чем в космосе настанет мир, не исключено, что будет развиваться, к примеру, космическое пиратство.

В ноябре в Сиднее пройдет встреча мировых лидеров и представителей космических горнодобывающих компаний, которые обсудят проблемы будущей добычи ресурсов за пределами Земли. Чтобы достичь максимального взаимодействия между космическими экспертами и экспертами в горнодобывающей отрасли, решено совместить это событие с третьей Future Mining Conference. Возможно, по ее прошествии мы узнаем много нового и перспективного об этой, безусловно, интересной вехе нашего будущего.

Мечты о колонизации космоса и добыче там природных ресурсов появились давно, но именно сегодня они становятся реальностью. В начале года компании и Deep Space Industries заявили о намерениях начать промышленное освоение космоса. Т&P разбираются, какие полезные ископаемые они собираются добывать, насколько эти проекты осуществимы и сможет ли космос стать новой Аляской для золотоискателей XXI века.

Если о промышленном освоении планет пока только мечтают, то с астероидами дела обстоят куда более оптимистично. В первую очередь речь идет только о самых ближайших к Земле объектах, да и то тех чья скорость не превышает порога первой космической . Что касается самих астероидов, то наиболее перспективными для добычи считаются, так называемые, астероиды M-класса, большая часть из которых почти целиком состоит из никеля и железа, а также астероиды S-класса, имеющие в своей породе силикаты железа и магния. Также исследователи предполагают, что на этих астероидах могут быть обнаружены залежи золота и металлов платиновой группы, последние же ввиду своей редкости на Земле представляет особый интерес. Для того чтобы представлять о каких цифрах идет речь: астероид средних размеров (диаметром порядка 1,5 километров) содержит металлов на 20 триллионов долларов.

Наконец, еще одна важнейшая цель космических золотоискателей - астероиды С-класса (примерно 75 процентов от всех астероидов Солнечной системы), на которых планируется добывать воду. По подсчетам, даже самые маленькие астероиды этой группы, диаметром в 7 метров, могут содержать в себе до 100 тонн воды. Недооценивать воду нельзя, не стоит забывать, что из нее можно получить водород, который затем использовать в качестве топлива. К тому же добыча воды непосредственно на астероидах позволит сэкономить деньги на ее доставку с Земли.

Что добывать в космосе

Платина - лакомый кусок для всех инвесторов. Именно за счет платины энтузиасты космической добычи ресурсов смогут окупить свои затраты.

От запасов воды будет зависеть работа всей добывающей станции. К тому же «водных» астероидов вблизи Земли больше всего: порядка 75 процентов.

Железо - важнейший металл современной промышленности, поэтому вполне очевидно, что на нем в первую очередь будет сконцентрированы усилия добытчиков.

Как добывать

Добывать на астероиде, после чего доставлять на Землю для переработки.

Фабрика по добыче полезных ископаемых строится непосредственно на поверхности астероида. Для этого необходимо разработать технологию удерживающую оборудование на поверхности астероида, так как из-за небольшой силы тяжести даже слабое физическое воздействие может легко оторвать конструкцию и унести ее в космос. Другая проблема этого способа - доставка сырья для последующей обработки, которая может обойтись очень дорого.

Система самовоспроизводящихся машин. Чтобы обеспечить работу производства без участия человека, предлагается вариант создания системы самовоспроизводящихся машин, каждая из которых за определенный срок собирает свою точную копию. В 80-е годы такой проект даже разрабатывался НАСА, правде речь тогда шла о поверхности Луны. Если за месяц такая машина будет способна собирать аналогичную себе, меньше чем через года таких машин будет больше тысячи, а через три более миллиарда. В качестве источника питания машин предлагается использовать энергию солнечных батарей.

Добывать и перерабатывать прямо на астероиде. Строить станции, обрабатывающие сырье на поверхности астероида. Достоинство этого способа в том, что он позволит значительно сэкономить средства на доставку ископаемых к месту добычи. Минусы - дополнительное оборудования, и соответственно, более высокая степень автоматизации.

Переместить астероид к Земле для последующей добычи. Притянуть астероид к Земле можно с помощью космического буксира, по принципу действия аналогичного тем, что доставляют сейчас спутники на орбиту Земли. Второй вариант - создание гравитационного буксира, технологии с помощью которой планируется защищать Землю от потенциально опасных астероидов. Буксир представляет собой небольшое тело, которое подходит вплотную к астероиду (на расстояние до 50 метров) и создает гравитационное возмущение, меняющее его траекторию. Третий вариант, самый смелый и неординарный - изменение альбедо (отражающей способности) астероида. Часть астероида накрывается пленкой или покрывается краской, после чего, согласно теоретическим выкладкам, из-за неравномерного нагрева поверхности Солнцем, скорость вращения астероида должна измениться.

Кто будет добывать

За создание отвечает американский бизнесмен Питер Диамантис, создатель фонда X-Prize . Ученый коллектив возглавляют бывшие сотрудники НАСА, а финансовую поддержку проекту оказывают Ларри Пейдж и Джеймс Кэмерон. Первичная задача компании - постройка телескопа Arkyd-100 , производство которого она оплачивает сама, а все пожертвования пойдут на обслуживание телескопа и непосредственно, запуск, намеченный на 2014 год. Планы у Arkyd-100 вполне скромны - компания рассчитывает испытать телескоп, а заодно сделать качественные снимки галактик, Луны, туманностей и прочих космических красот. Но уже последующие Arkyd-200 и Arkyd-300 будут заниматься конкретным поиском астероидов и подготовке к добыче сырья.

У руля Deep Space Industries стоит Рик Тамлинсон, приложивший руку к все-тому же фонду X-Prize, бывший сотрудник НАСА Джон Мэнкинс и австралийский ученый Марк Сонтер. Уже сейчас компания располагает двумя космическими аппаратами. Первый из них, FireFly, планируется к запуску в космос в 2015 году. Аппарат весит всего 25 килограмм и будет нацелен на поиск подходящих для будущего освоения астероидов, изучение их структуры, скорости вращения и других параметров. Второй, DragonFly, должен будет доставить куски астероидов массой 25-75 килограмм на Землю. Его запуск, согласно программе, осуществится в 2016 году. Главный секретное оружие Deep Space Industries - технология MicroGravity Foundry, микрогравитационный 3D-принтер, способный создавать высокоточные детали большой плотности в условиях малой гравитации. Уже к 2023 году компания рассчитывает на активную добычу на астероидах платины, железа, воды и газов.

НАСА тоже не стоит в стороне. К сентябрю 2016 года агентство планирует запустить аппарат OSIRIS-REX , который должен начать исследование астероида Бенну. Ориентировочно к концу 2018 году аппарат достигнет цели, возьмет пробу грунта и еще через два-три года вернется на Землю. В планах исследователей - проверить догадки о происхождении Солнечной системы, проследить за отклонением траектории астероида (существует, хоть и чрезвычайно малая, вероятность, что Бенну когда-нибудь может столкнуться с Землей), и, наконец, самое интересное: изучить грунт астероида на предмет полезных ископаемых.

Для анализа грунта на OSIRIS-REX будут работать 3 спектрометра: инфракрасный, тепловой и рентгеновский. Первый будет измерять инфракрасное излучение и искать углеродосодержащие материалы, второй - измерять температуру в поисках воды и глины. Третий - улавливать источники рентгеновского излучения для обнаружения металлов: прежде всего железа, магния и кремния.

Кому принадлежат космические ресурсы

Если глобальные планы компаний станут реальностью, встает еще один насущный вопрос: как будут разделяться права на добычу полезных ископаемых в космосе? Впервые этой проблемы коснулись еще в 1967 году, когда ООН приняла закон, запрещающий добычу ресурсов в космосе, пока компания-добытчик не представит де-факто захвата территории. О правах на сами ресурсы ничего сказано не было. Немного прояснил ситуацию документ ООН 1984 года, касающийся Луны. В нем заявлено, что «Луна и ее природные ресурсы являются общим наследием человечества», а использование ее ресурсов «должно осуществляться на благо и в интересах всех стран». При этом главные космические державы, СССР и США, этот документ проигнорировали и вопрос остался открытым до сегодняшнего дня.

Для решения вопроса некоторые специалисты предлагают взять за аналог систему, применяемую сейчас в Конвенции о международном морском праве, регулирующей добычу ископаемых с морского дна. Принципы ее более чем идеалистические - согласно конвенции, ни одно государство, так же как и частное лицо не может претендовать на право присвоения территории и ее ресурсов, эти права принадлежат всему человечеству, а сами ресурсы должны использоваться только в мирных целях. Но вряд ли это остановит агрессивную экспансию частных компаний. О характере будущей индустрии лучше всего высказался глава правления Deep Space Industries Рик Тамлинсон: «Существует миф, что впереди нас не ждет ничего хорошего и нам не на что надеяться. Этот миф существует только в умах верящих в него людей. Мы же убеждены, что это только начало».






Свет Свет это солнечная радиация; которая делится на рассеянную, прямую, поглощенную, отраженную. Для фотосинтеза важна та часть радиации, которая называется фотосинтетически активной радиацией. Учиты ­ вается также длина светового дня. Растениями длинного светового дня являются: рожь, пшеница, овес, ячмень. К растениям короткого светово ­ го дня относятся кукуруза, хлопчатник, просо.



Способы использования Для начала охарактеризуем основные направления развития солнечной энергетики как составляющую группы " Космические ресурсы мира ". В настоящее время выделяют две основополагающие идеи. Первая заключается в запуске на околоземную орбиту специального спутника, оснащенного значительным количеством солнечных батарей. Посредством фотоэлементов попадающий на их поверхность свет будет преобразовываться в электрическую энергию, а после передаваться на специальные станции - приемники на Земле. Вторая идея основана на схожем принципе. Отличие заключается в том, что космические ресурсы будут собираться посредством солнечных батарей, которые будут установлены на экваторе естественного спутника Земли. В таком случае система будет образовывать так называемый " лунный пояс ".


Полёт на Луну Полеты на нее уже довольно давно перестали быть аспектами научной фантастики. В настоящее время спутник нашей планеты бороздят исследовательские зонды. Именно благодаря им человечество узнало, что лунная поверхность имеет состав, схожий с земной корой. Следовательно, там возможна разработка месторождений таких ценных веществ, как титан и гелий.


Полёт на Марс На так называемой " красной " планете также много всего интересного. Согласно исследованиям, кора Марса в гораздо большей степени богата чистыми металлическими рудами. Таким образом, на нем в будущем может начаться разработка месторождений меди, олова, никеля, свинца, железа, кобальта и прочих ценных веществ. Кроме того, возможно, именно Марс будет считаться главным поставщиком редких металлических руд. К примеру, таких как рутений, скандий или торий.


Астероиды В настоящее время ученые постановили, что именно вышеописанные космические тела, бороздящие пространства Вселенной, могут стать наиболее важными станциями по обеспечению множеством необходимых ресурсов. Например, на некоторых астероидах при помощи специализированной техники и тщательного анализа полученных данных были обнаружены такие ценные металлы, как рубидий и иридий, а также железо. Помимо прочего, вышеописанные космические тела являются отличными поставщиками сложного соединения, которое носит название дейтерий. В дальнейшем планируется использование именно этого вещества в качестве основного топливного сырья для электрических станций будущего. Отдельно следует отметить еще один жизненно важный вопрос. В настоящее время определенный процент населения Земли страдает от постоянной нехватки воды. В будущем подобная проблема может распространиться на большей части территории планеты. В таком случае именно астероиды могут стать поставщиками подобного жизненно необходимого ресурса. Поскольку на многих из них содержится пресная вода в виде льда.

Климатические и космические ресурсы - ресурсы будущего. И космические и климатические ресурсы являются неисчерпаемыми, они не используются непосредственно в материальной и нематериальной деятельности людей, практически не изымаются из природы в процессе использования, однако существенно влияют на условия жизни и хозяйствования людей.

Климатические ресурсы - неисчерпаемые природные ресурсы, включающие свет, тепло, влагу и энергию ветра.

Климатические ресурсы тесно связаны с определенными особенностями климата. В их состав входят агроклиматические ресурсы, ресурсы ветровой энергии. Агроклиматические ресурсы, то есть свет, тепло и влага, определяющие возможность выращивания всех сельскохозяйственных культур. Географическое распределение этих ресурсов отражено на агроклиматической карте. К климатическим относят также и ресурсы ветровой энергии, которую люди издавна научились использовать с помощью ветряков и парусников. На земном шаре есть немало мест (например, побережья океанов и морей, Дальний Восток, юг Европейской части России, Украины), где скорость ветра превышает 5 м/с, что делает использование этой энергии с помощью ВЭС экологически чистым и экономически оправданным, к тому же она имеет практически неисчерпаемый потенциал.

К космическим ресурсам относят прежде всего солнечную радиацию - самое мощное на Земле энергетический источник. Солнце - гигантский термоядерный реактор, первоисточник не только жизнь на Земле, но и практически всех ее энергоресурсов. Годовой поток солнечной энергии, достигающий нижних слоев атмосферы и земной поверхности, измеряется величиной (1014 кВт), которая в десятки раз превышает всю энергию, содержащуюся в разведанных запасах минерального топлива, и в тысячи раз - современный уровень мирового энергопотребления. Естественно, что наилучшие условия для использования солнечной энергии существуют в аридному поясе Земли, где продолжительность солнечного сияния наибольшая США (Флорида, Калифорния), Япония, Израиль, Кипр, Австралия, Украина (Крым), Кавказ, Казахстан, Средняя Азия.

Влияние климата на экономику. Известно, что климат существенно влияет на различные отрасли экономики. Каждый удачный прогноз серьезных изменений климата без дополнительных затрат дает возможность сэкономить значительные суммы бюджетных средств. Например, в Китае при проектировании и строительстве металлургического комплекса учет климатических данных позволил сэкономить 20 млн долларов. Использование климатической информации и специальных прогнозов в масштабах Канады дает ежегодно экономию 50-100 млн долларов. В США сезонные прогнозы (даже с точностью 60 %) дают выгоду 180 млн долларов в год с учетом только сельскохозяйственной, лесной и рыболовной отраслей.

Долгосрочное прогнозирование дает возможность существенно уменьшить нанесенный климатическими изменениями ущерб хозяйству и даже иметь от таких прогнозов большой экономический эффект. Прежде всего это касается сельскохозяйственного производства. Структура посевных площадей, сроки сева, нормы высева, глубина заделки семян в культурном земледелии немыслимы без надежного прогноза ожидаемых погодных условий посевного и вегетационного периода. Удобрения и вся агротехника, и уход за посевами влияют на уровень урожайности, но биологические условия, создаваемые характером погоды, - доминирующий фактор. Земледелие, таким образом, много не получает из того, что способны давать климатические ресурсы. За последние 15 лет экономический ущерб через стихийные явления природы очень вырос. Человеческое сообщество само усугубляет некоторые климатические явления. Признаки потепления планетарного климата воспринимаются как антропогенное воздействие на окружающую среду.

Рациональное хозяйствование человека невозможно без учета климатических особенностей региона.

Рис. 44. Эмиссия СО в странах мира (на душу населения за год)

Загрязнение атмосферного воздуха. Атмосферный воздух - неисчерпаемый ресурс, однако в отдельных районах земного шара он подвергается столь сильному антропогенному воздействию, что вполне уместно ставить вопрос о качественном изменении воздуха в результате атмосферного загрязнения.

Атмосферное загрязнение - присутствие в воздухе в избыточном количестве различных газов, частичек твердых и жидких веществ, паров, концентрация которых отрицательно влияет на флору и фауну Земли и жизненные условия человеческого общества.

Основные антропогенные источники загрязнения атмосферного воздуха - транспорт, промышленные предприятия, теплоэлектростанции и тому подобное. Так, в атмосферу попадают газообразные выбросы, твердые частицы, радиоактивные вещества. При этом их температура, свойства и состояние существенно изменяются, а вследствие взаимодействия с составляющими атмосферы могут происходить множество химических и фотохимических реакций. В результате этого в атмосферном воздухе образуются новые компоненты, свойства и поведение которых значительно отличаются от первоначальных.

Газообразные выбросы образуют соединения углерода, серы и азота. Оксиды углерода практически не взаимодействуют с другими веществами в атмосфере и время их существования ограничено. Например, установлено, что с 1900 г. доля диоксида углерода в атмосфере увеличилось с 0,027 до 0,0323 % (рис. 44). Накопление в атмосфере углекислого газа может вызвать так называемый парниковый эффект, который сопровождается уплотнением слоя диоксида углерода, который свободно пропускает солнечную радиацию к Земле, задерживает возврат теплового излучения в верхние слои атмосферы. В связи с этим в нижних слоях атмосферы повышается температура, что приводит к таянию льда и снега на полюсах, подъем уровня океанов, морей и затопление значительной части суши.

В результате воздействия промышленных отходов, выбрасываемых в воздушное пространство, разрушается озоновый слой земного шара. Вследствие этого образуются озоновые дыры, через которые на поверхность Земли попадает огромное количество вредных излучений, от которых страдают и животный мир, и сами люди. В последние десятилетия начали выпадать цветные дожди, которые одинаково негативно влияют на здоровье людей и на почву. Выбросы радиоактивных веществ в атмосферу наиболее опасны для всего живого на Земле, поэтому их источники и закономерности размещения в атмосфере являются объектом постоянных наблюдений. Под влиянием динамических процессов в атмосфере вредные выбросы могут распространяться на значительные расстояния.