Частные производные и полный дифференциал. Частные производные и полный дифференциал функций нескольких переменных Частный производные полный дифференциал двух переменных

Частной производной функции z = f(x, y по переменной х называется производная этой функции при постоянном значении переменной у, она обозначается или z" х.

Частной производной функции z = f(x, y) по переменной у называется производная по у при постоянном значении переменной у; она обозначается или z" у.

Частная производная функции нескольких переменных по одной переменной определяется как производная этой функции по соответствующей переменной при условии, что остальные переменные считаются постоянными.

Полным дифференциалом функции z = f(x, y) в некоторой точке М(Х, у) называется выражение

,

Где и вычисляются в точке М(х, у), а dx = , dy = у.

Пример 1

Вычислить полный дифференциал функции.

z = х 3 – 2х 2 у 2 + у 3 в точке М(1; 2)

Решение:

1) Находим частные производные:

2) Вычислим значение частных производных в точке М(1; 2)

() М = 3 · 1 2 – 4 · 1 · 2 2 = -13

() М = - 4 · 1 2 · 2 + 3 · 2 2 = 4

3) dz = - 13dx + 4 dy

Вопросы для самоконтроля:

1. Что называется первообразной? Перечислить свойства первообразной.

2. Что называется неопределенным интегралом?

3. Перечислить свойства неопределенного интеграла.

4. Перечислить основные формулы интегрирования.

5. Какие методы интегрирования вы знаете?

6. В чем заключается суть формулы Ньютона – Лейбница?

7. Дать определение определенного интеграла.

8. В чем суть вычисления определенного интеграла методом подстановки?

9. В чем суть метода вычисления определенного интеграла по частям?

10. Какая функция называется функцией двух переменных? Как она обозначается?

11. Какая функция называется функцией трех переменных?

12. Какое множество называется областью определения функции?

13. С помощью каких неравенств можно задать замкнутую область Д на плоскости?

14. Что называется частной производной функции z = f(x, y) по переменной х? Как она обозначается?

15. Что называется частной производной функции z = f(x, y) по переменной у? Как она обозначается?

16. Какое выражение называется полным дифференциалом функции

Тема 1.2 Обыкновенные дифференциальные уравнения.

Задачи, приводящие к дифференциальным уравнениям. Дифференци­альные уравнения с разделяющимися переменными. Общие и частные ре­шения. Однородные дифференциальные уравнения первого порядка. Ли­нейные однородные уравнения второго порядка с постоянными коэффици­ентами.

Практическое занятие № 7 «Нахождение общих и частных решений дифференциальных уравнений с разделяющимися переменными»*

Практическое занятие № 8 «Линейные и однородные дифференциальные уравнения»

Практическое занятие № 9 «Решение дифференциальных уравнений 2 - го порядка с постоянными коэффициентами»*

Л4, глава 15, стр. 243 – 256

Методические указания

Понятие функции двух переменных

Величина z называется функцией двух независимых переменных x и y , если каждой паре допустимых значений этих величин по определенному закону соответствует одно вполне определенное значение величины z. Независимые переменные x и y называют аргументами функции.

Такая функциональная зависимость аналитически обозначается

Z = f (x,y), (1)

Значения аргументов x и y, которым соответствуют действительные значения функции z, считаются допустимыми , а множество всех допустимых пар значений x и y называют областью определения функции двух переменных.

Для функции нескольких переменных, в отличие от функции одной переменной, вводят понятия ее частных приращений по каждому из аргументов и понятие полного приращения.

Частным приращением Δ x z функции z=f (x,y) по аргументу x называется приращение, которое получает эта функция, если ее аргумент x получает приращение Δx при неизменном y :

Δ x z = f (x + Δx, y) -f (x, y), (2)

Частным приращением Δ y z функции z= f (x, y) по аргументу y называется приращение, которое получает эта функция, если ее аргумент y получает приращение Δy при неизменном x:

Δ y z= f (x, y + Δy) – f (x, y) , (3)

Полным приращением Δz функции z= f (x, y) по аргументам x и y называется приращение, которое получает функция, если оба ее аргумента получают приращения:

Δz= f (x+Δx, y+Δy) – f (x, y) , (4)

При достаточно малых приращениях Δx и Δy аргументов функции

имеет место приближенное равенство:

Δz Δ x z + Δ y z , (5)

причем оно тем точнее, чем меньше Δx и Δy .

Частные производные функции двух переменных

Частной производной функции z=f (x, y) по аргументу x в точке (x, y) называется предел отношения частного приращения Δ x z этой функции к соответствующему приращению Δx аргумента x при стремлении Δx к 0 и при условии, что этот предел существует:

, (6)

Аналогично определяют производную функции z=f (x, y) по аргументу y:

Кроме указанного обозначения, частные производные функции обозначают также , z΄ x , f΄ x (x, y); , z΄ y , f΄ y (x, y).

Основной смысл частной производной состоит в следующем: частная производная функции нескольких переменных по какому-либо из ее аргументов характеризует скорость изменения данной функции при изменении этого аргумента.



При вычислении частной производной функции нескольких переменных по какому-либо аргументу все остальные аргументы этой функции считаются постоянными.

Пример1. Найти частные производные функции

f (x, y)= x 2 + y 3

Решение . При нахождении частной производной этой функции по аргументу x аргумент y считаем постоянной величиной:

;

При нахождении частной производной по аргументу y аргумент x считаем постоянной величиной:

.

Частные и полный дифференциалы функции нескольких переменных

Частным дифференциалом функции нескольких переменных по какому -либо из ее аргументов называется произведение частной производной этой функции по данному аргументу на дифференциал этого аргумента:

d x z= , (7)

d y z= (8)

Здесь d x z и d y z -частные дифференциалы функции z= f (x, y) по аргументам x и y. При этом

dx= Δx; dy= Δy, (9)

Полным дифференциалом функции нескольких переменных называется сумма ее частных дифференциалов:



dz= d x z + d y z , (10)

Пример 2. Найдем частные и полный дифференциалы функции f (x, y)= x 2 + y 3 .

Так как частные производные этой функции найдены в примере 1, то получаем

d x z= 2xdx; d y z= 3y 2 dy;

dz= 2xdx + 3y 2 dy

Частный дифференциал функции нескольких переменных по каждому из ее аргументов является главной частью соответствующего частного приращения функции .

Вследствие этого можно записать:

Δ x z d x z, Δ y z d y z, (11)

Аналитический смысл полного дифференциала заключается в том, что полный дифференциал функции нескольких переменных представляет собой главную часть полного приращения этой функции .

Таким образом, имеет место приближенное равенство

Δz dz, (12)

На использовании формулы (12) основано применение полного дифференциала в приближенных вычислениях.

Представим приращение Δz в виде

f (x + Δx; y + Δy) – f (x, y)

а полный дифференциал в виде

Тогда получаем:

f (x + Δx, y + Δy) – f (x, y) ,

, (13)

3.Цель деятельности студентов на занятии:

Студент должен знать:

1. Определение функции двух переменных.

2. Понятие частного и полного приращения функции двух переменных.

3. Определение частной производной функции нескольких переменных.

4. Физический смысл частной производной функции нескольких переменных по какому- либо из ее аргументов.

5. Определение частного дифференциала функции нескольких переменных.

6. Определение полного дифференциала функции нескольких переменных.

7. Аналитический смысл полного дифференциала.

Студент должен уметь:

1. Находить частные и полное приращение функции двух переменных.

2. Вычислять частные производные функции нескольких переменных.

3. Находить частные и полные дифференциалы функции нескольких переменных.

4. Применять полный дифференциал функции нескольких переменных в приближенных вычислениях.

Теоретическая часть :

1. Понятие функции нескольких переменных.

2. Функция двух переменных. Частное и полное приращение функции двух переменных.

3. Частная производная функции нескольких переменных.

4. Частные дифференциалы функции нескольких переменных.

5. Полный дифференциал функции нескольких переменных.

6. Применение полного дифференциала функции нескольких переменных в приближенных вычислениях.

Практическая часть:

1.Найдите частные производные функций:

1) ; 4) ;

2) z= e ху+2 x ; 5) z= 2tg хе у;

3) z= х 2 sin 2 y; 6) .

4. Дайте определение частной производной функции по данному аргументу.

5. Что называется частным и полным дифференциалом функции двух переменных? Как они связаны между собой?

6. Перечень вопросов для проверки конечного уровня знаний:

1. Равно ли в общем случае произвольной функции нескольких переменных ее полное приращение сумме всех частных приращений?

2. В чем состоит основной смысл частной производной функции нескольких переменных по какому-либо из ее аргументов?

3. В чем состоит аналитический смысл полного дифференциала?

7.Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 20 мин.

3.Решение примеров и задач - 40 мин.

4. Текущий контроль знаний -30 мин.

5. Подведение итогов занятия – 5 мин.

8. Перечень учебной литературы к занятию :

1. Морозов Ю.В. Основы высшей математики и статистики. М., «Медицина», 2004, §§ 4.1–4.5.

2. Павлушков И.В. и др. Основы высшей математики и математической статистики. М., «ГЭОТАР-Медиа», 2006, § 3.3.

Пусть функция определена в некоторой (открытой) областиD точек
мерного пространства, и
– точка в этой области, т.е.
D .

Частным приращением функции многих переменных по какой-либо переменной называется то приращение, которое получит функция, если мы дадим приращение этой переменной, считая, что все остальные переменные имеют постоянные значения.

Например, частное приращение функции по переменнойбудет

Частной производной по независимой переменной в точке
от функции называется предел (если существует) отношения частного приращения
функции к приращению
переменнойпри стремлении
к нулю:

Частную производную обозначают одним из символов:

;
.

Замечание. Индекс внизу в этих обозначениях лишь указывает, по какой из переменных берется производная, и не связана с тем, в какой точке
эта производная вычисляется.

Вычисление частных производных не представляет ничего нового по сравнению с вычислением обыкновенной производной, необходимо только помнить, что при дифференцировании функции по какой-либо переменной все остальные переменные принимаются за постоянные. Покажем это на примерах.

Пример 1. Найти частные производные функции
.

Решение . При вычислении частной производной функции
по аргументурассматриваем функциюкак функцию только одной переменной, т.е. считаем, чтоимеет фиксированное значение. При фиксированномфункция
является степенной функцией аргумента. По формуле дифференцирования степенной функции получаем:

Аналогично, при вычислении частной производной считаем, что фиксировано значение, и рассматриваем функцию
как показательную функцию аргумента. В итоге получаем:

Пример 2 . Н айти частные производные ифункции
.

Решение. При вычислении частной производной по заданную функциюмы будем рассматривать как функцию одной переменной, а выражения, содержащие, будут постоянными множителями, т.е.
выступает в роли постоянного коэффициентапри степенной функции(
). Дифференцируя это выражение по , получим:

.

Теперь, наоборот, функцию рассматриваем как функцию одной переменной, в то время как выражения, содержащие, выступают в роли коэффициента
(
).Дифференцируя по правилам дифференцирования тригонометрических функций, получаем:

Пример 3. Вычислить частные производные функции
в точке
.

Решение. Находим сначала частные производные данной функции в произвольной точке
её области определения. При вычислении частной производной посчитаем, что
являются постоянными.

при дифференцировании по постоянными будут
:

а при вычислении частных производных по и по, аналогично, постоянными будут, соответственно,
и
, т.е.:

Теперь вычислим значения этих производных в точке
, подставляя в их выражения конкретные значения переменных. В итоге получаем:

11. Частные и полный дифференциалы функции

Если теперь к частному приращению
применить теорему Лагранжа о конечных приращениях по переменной, то, считаянепрерывной, получим следующие соотношения:

где
,
– бесконечно малая величина.

Частным дифференциалом функции по переменнойназывается главная линейная часть частного приращения
, равная произведению частной производной по этой переменной на приращение этой переменной, и обозначается

Очевидно, частный дифференциал отличается от частного приращения на бесконечно малую высшего порядка.

Полным приращением функции многих переменных называется то её приращение, которое она получит, когда мы всем независимым переменным дадим приращение, т.е.

где все
, зависят оти вместе с ними стремятся к нулю.

Под дифференциалами независимых переменных условились подразумеватьпроизвольные приращения
и обозначать их
. Таким образом, выражение частного дифференциала примет вид:

Например, частный дифференциал поопределяется так:

.

Полным дифференциалом
функции многих переменныхназывается главная линейная часть полного приращения
, равная, т.е.сумме всех её частных дифференциалов:

Если функция
имеет непрерывные частные производные

в точке
, то онадифференцируема в данной точке .

При достаточно малом для дифференцируемой функции
имеют место приближенные равенства

,

с помощью которых можно производить приближенные вычисления.

Пример 4. Найти полный дифференциал функции
трёх переменных
.

Решение. Прежде всего, находим частные производные:

Заметив, что они непрерывны при всех значениях
, находим:

Для дифференциалов функций многих переменных верны все теоремы о свойствах дифференциалов, доказанные для случая функций одной переменной, например: если и– непрерывные функции переменных
, имеющие непрерывные частные производные по всем переменным, аи– произвольные постоянные, то:

(6)

Транскрипт

1 ЛЕКЦИЯ N Полный дифференциал, частные производные и дифференциалы высших порядков Полный дифференциал Частные дифференциалы Частные производные высших порядков Дифференциалы высших порядков 4Производные от сложных функций 4 Полный дифференциал Частные дифференциалы Если функция z=f(,) дифференцируема, то ее полный дифференциал dz равен dz=a +B () z z Замечая, что A=, B =, запишем формулу () в следующем виде z z dz= + () Распространим понятие дифференциала функции на независимые переменные, положив дифференциалы независимых переменных равными их приращениям: d= ; d= После этого формула полного дифференциала функции примет вид z z dz= d + d () d + d Пример Пусть =ln(+) Тогда dz= d + d = Аналогично, если u=f(, n) есть дифференцируемая функция n независимых n переменных, то du= d (d =) = Выражение d z=f (,)d (4) называется частным дифференциалом функции z=f(,) по переменной; выражение d z=f (,)d (5) называется частным дифференциалом функции z=f(,) по переменной Из формул (), (4) и (5) следует, что полный дифференциал функции является суммой ее частных дифференциалов: dz=d z+d z Отметим, что полное приращение z функции z=f(,), вообще говоря, не равно сумме частных приращений Если в точке (,) функция z=f(,) дифференцируема и дифференциал dz 0 в этой точке, то ее полное приращение z= z z + + α (,) + β (,) отличается от своей линейной части dz= z z + только на сумму последних слагаемых α +β, которые при 0 и 0 являются бесконечно малыми более высокого порядка, чем слагаемые линейной части Поэтому при dz 0 линейную часть приращения дифференцируемой функции называют главной частью приращения функции и пользуются приближенной формулой z dz, которая будет тем более точной, чем меньшими по абсолютной величине будут приращения аргументов,97 Пример Вычислить приближенно arctg(),0

2 Решение Рассмотрим функцию f(,)=arctg() Применяя формулу f(х 0 + х,у 0 + у) f(х 0, у 0) + dz, получим arctg(+) arctg() + [ arctg()] + [ arctg()] или + + arctg() arctg() () + () Положим =, =, тогда =-0,0, =0,0 Поэтому, (0,0 0,0 arctg) arctg() + (0,0) 0,0 = arctg 0,0 = + 0,0 + () + () π = 0,05 0,0 0,75 4 Можно показать, что ошибка, получающаяся при применении приближенной формулы z dz не превосходит числа = М (+), где М наибольшее значение абсолютных величин вторых частных производных f (,), f (,), f (,) при изменении аргументов от до + и от до + Частные производные высших порядков Если функция u=f(, z) имеет в некоторой (открытой) области D частную производную по одной из переменных, то найденная производная, сама являясь функцией от, z, может в свою очередь в некоторой точке (0, 0, z 0) иметь частные производные по той же или по любой другой переменной Для исходной функции u=f(, z) эти производные будут частными производными второго порядка Если первая производная была взята, например, по, то ее производная по, z обозначается так: f (0, 0, z0) f (0, 0, z0) f (0, 0, z0) = ; = ; = или u, u, u z z z Аналогично определяют производные третьего, четвертого и так далее порядков Заметим, что частная производная высшего порядка, взятая по различным переменным, например, ; называется смешанной частной производной Пример u= 4 z, тогда, u =4 z ; u = 4 z ; u z = 4 z; u = z ; u =6 4 z ; u zz = 4 ; u = z ; u = z ; u z = 4 z; u z =8 z; u z =6 4 z; u z =6 4 z Заметим, что смешанные производные, взятые по одним и тем же переменным, но в разном порядке, совпадают Это свойство верно не для всех, вообще говоря, функций, но оно имеет место в широком классе функций Теорема Предположим, что) функция f(,) определена в (открытой) области D,) в этой области существуют первые производные f и f, а также вторые смешанные производные f и f и наконец,) эти последние производные f и f, как функции и, непрерывны в некоторой точке (0, 0) области D Тогда в этой точке f (0, 0)=f (0, 0) Доказательство Рассмотрим выражение

3 f (0 +, 0 f (0 +, 0) f (0, 0 + f (0, 0) W=, где, отличны от нуля, например, положительны, и притом настолько малы, что в D содержится весь прямоугольник [ 0, 0 +; 0, 0 +] Введем вспомогательную функцию от: f (, 0 f (, 0) ϕ()=, которая в промежутке [ 0, 0 +] в силу () имеет производную: f f ϕ (, 0 +) (, 0) ()= и, следовательно, непрерывна С помощью этой функции f (0 +, 0 f (0 +, 0) f (0, 0 f (0, 0) выражение W, которое равно W= можно переписать в виде: ϕ (0 +) ϕ (0) W= Так как для функции ϕ() в промежутке [ 0, 0 +] выполняются все условия теоремы Лагранжа, то мы можем, по формуле конечных приращений, преобразовать выражение W f так: W=ϕ (0 + θ, 0 f (0 + θ, 0) (0 +θ)= (0<θ<) Пользуясь существованием второй производной f (,), снова применим формулу конечных приращений, на этот раз к функции от: f (0 +θ,) в промежутке [ 0, 0 +] Получим W=f (0 +θ, 0 +θ), (0<θ <) Но выражение W содержит и, с одной стороны, и и, с другой, одинаковым образом Поэтому, можно поменять их роли и, введя вспомогательную функцию: Ψ()= f (0 +,) f (0,), путем аналогичных рассуждений получить результат: W=f (0 +θ, 0 +θ) (0<θ, θ <) Из сопоставления () и (), находим f (0 +θ, 0 +θ)=f (0 +θ, 0 +θ) Устремив теперь и к нулю, перейдем в этом равенстве к пределу В силу ограниченности множителей θ, θ, θ, θ, аргументы и справа, и слева стремятся к 0, 0 А тогда, в силу (), получим: f (0, 0)=f (0, 0), что и требовалось доказать Таким образом, непрерывные смешанные производные f и f всегда равны Общая теорема о смешанных производных Пусть функция u=f(, n) от переменных определена в открытой n-мерной области D и имеет в этой области всевозможные частные производные до (n-)-го порядка включительно и смешанные производные n-го порядка, причем все эти производные непрерывны в D При этих условиях значение любой n-ой смешанной производной не зависит от того порядка, в котором производятся последовательные дифференцирования Дифференциалы высших порядков Пусть в области D задана непрерывная функция u=f(, х), имеющая непрерывные частные производные первого порядка Тогда, du= d + d + + d

4 Мы видим, что du также является некоторой функцией от, Если предположить существование непрерывных частных производных второго порядка для u, то du будет иметь непрерывные частные производные первого порядка и можно говорить о полном дифференциале от этого дифференциала du, d(du), который называется дифференциалом второго порядка (или вторым дифференциалом) от u; он обозначается d u Подчеркнем, что приращения d, d, d при этом рассматриваются как постоянные и остаются одними и теми же при переходе от одного дифференциала к следующему (причем d, d будут нулями) Итак, d u=d(du)=d(d + d + + d) = d() d + d() d + + d() d или d u = (d + d + d + + d) d + + (d + d + = d + d + + d + dd + dd + + dd + + Аналогично, определяется дифференциал третьего порядка d u и так далее Если для функции u существуют непрерывные частные производные всех порядков до n-го включительно, то существование n-го дифференциала обеспечено Но выражения для них становятся все более сложными Можно упростить запись Вынесем в выражении первого дифференциала «букву u» за скобки Тогда, запись будет символической: du=(d + d + + d) u ; d u=(d + d + + d) u ; d n n u=(d + d + + d) u, которую надлежит понимать так: сначала «многочлен», стоящий в скобках, формально, возводится по правилам алгебры в степень, затем все полученные члены «умножаются» на u (которое n дописывается в числителях при), и только после этого всем символам возвращается их значение как производных и дифференциалов u d) d u 4Производные от сложных функций Пусть мы имеем функцию u=f(, z), определенную в области D, причем каждая из переменных, z в свою очередь, является функцией от переменной t в некотором промежутке: =ϕ(t), =ψ(t), z=λ(t) Пусть, кроме того, при изменении t точки (, z) не выходят за пределы области D Подставив значения, и z в функцию u, получим сложную функцию: u=f(ϕ(t), ψ(t), λ(t)) Предположим, что u имеет по, и z непрерывные частные производные u, u и u z и что t, t и z t существуют Тогда можно доказать существование производной сложной функции и вычислить ее Придадим переменной t некоторое приращение t, тогда, и z получат соответственно приращения, и z, функция же u получит приращение u Представим приращение функции u в форме: (это можно сделать, так как мы предположили существование непрерывных частных производных u, u и u z) u=u +u +u z z+α +β +χ z, где α, β, χ 0 при, z 0 Разделим обе части равенства на t, получим u z z = u + u + uz + α + β + χ t t t t t t t 4

5 Устремим теперь приращение t к нулю: тогда, z будут стремиться к нулю, так как функции, z от t непрерывны (мы предположили существование производных t, t, z t), а потому, α, β, χ тоже стремятся к нулю В пределе получаем u t =u t +u t +u z z t () Видим, что при сделанных предположениях производная сложной функции действительно существует Если воспользоваться дифференциальным обозначением, то du d d dz () будет иметь вид: = + + () dt dt dt z dt Рассмотрим теперь случай зависимости, z от нескольких переменных t: =ϕ(t, v), =ψ(t, v), z=χ(t, v) Кроме существования и непрерывности частных производных функции f(, z), мы предполагаем здесь существование производных от функций, z по t и v Этот случай существенно не отличается от уже рассмотренного, так как при вычислении частной производной функции от двух переменных мы одну из переменных фиксируем, и у нас остается функция только от одной переменной, формула ()будет та z же, а () нужно переписать в виде: = + + (а) t t t z t z = + + (б) v v v z v Пример u= ; =ϕ(t)=t ; =ψ(t)=cos t u t = - t + ln t = - t- ln sint 5


Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Приложение Определение производной Пусть и значения аргумента, а f) и f) - ((соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

1. Основные понятия. Функции нескольких переменных. Исследование функции нескольких переменных проведем на примерах функций двух и трех переменных, так как все данные определения и полученные результаты

2.2.7. Применение дифференциала к приближенным вычислениям. Дифференциал функции y = зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: dy d Тогда абсолютная погрешность:

Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

6. Дифференциал функции 1. Определение и геометрический смысл ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется дифференцируемой в точке x 0, если ее приращение в этой точке может быть записано как сумма линейной

Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ 3 Функция двух переменных, область определения, способы задания и геометрический смысл. Определение: z f, называется функцией двух переменных, если каждой паре значений,

Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ()

Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f (x, x) определена в области D, и точка x (x, x) = принадлежит данной области Функция u = f (x, x) имеет

Модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

9 Производная и дифференциал 91 Основные формулы и определения для решения задач Определение Пусть функция y f () определена на некоторой f (Δ) f () Δy окрестности точки Предел отношения при Δ Δ Δ, если

1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Функции нескольких аргументов Понятие функции каждому элементу х из множества Х по некоторому закону у = f(х) поставлено в соответствие единственное значение переменной у из множества У каждой паре чисел

Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f (1, n) переменной от переменных 1, n называется функцией n аргументов 1, n В дальнейшем будем рассматривать

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

СА Лавренченко wwwlawrencenkoru Лекция 4 Дифференцирование сложных функций Неявное дифференцирование Вспомним правило дифференцирования для функций одной переменной также называемое цепным правилом (см

Раздел Дифференциальное исчисление функции одной и нескольких переменных Функция действительного аргумента Действительные числа Целые положительные числа называются натуральными Добавим к натуральным

Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(,) f () () (), где () при

Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: 11 Функциональная связь Предел функции 1 Производная функции 1 Механический физический и геометрический смысл производной 14 Основные

М И Н И С Т Е Р С Т В О О Б Р А З О В А Н И Я И Н А У К И Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский

ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» курс, семестр Заочная форма обучения ТЕМА Матричная алгебра При решении экономических задач применяются методы экономико-математического моделирования, использующие решение

В.В. Жук, А.М. Камачкин Дифференцируемость функций многих переменных. Дифференцируемость функции в точке. Достаточные условия дифференцируемости в терминах частных производных. Дифференцирование сложной

Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

ЛЕКЦИЯ 23 КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ. ТЕОРЕМА ЛИУВИЛЛЯ О СОХРАНЕНИИ ФАЗОВОГО ОБЪЁМА. ПРОИЗВОДЯЩАЯ ФУНКЦИЯ СВОБОДНОГО ПРЕОБРАЗОВАНИЯ Продолжим изучать канонические преобразования. Сначала напомним основные

Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 Дифференциальное исчисление функций одной

55 является при бесконечно малой величиной более высокого порядка малости по сравнению с ρ n (,), где ρ () + (), те можно представить его в форме Пеано n R, ρ Пример Записать формулу Тейлора при n с

Тема Определенный интеграл Определенный интеграл Задачи, приводящие к понятию определенного интеграла Задача о вычислении площади криволинейной трапеции В системе координат Оху дана криволинейная трапеция,

5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида (a + a) + a () + K + a () + K a) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =, х =,

Дифференциальные уравнения лекция 4 Уравнения в полных дифференциалах. Интегрирующий множитель Лектор Шерстнёва Анна Игоревна 9. Уравнения в полных дифференциалах Уравнение d + d = 14 называется уравнением

Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Математический анализ Раздел: Функция нескольких переменных Тема: Дифференцируемость ФНП (окончание. Частные производные и дифференциалы сложных ФНП. Дифференцирование неявных функций Лектор Рожкова С.В.

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - теорема Коши - формула конечных приращений - правило Лопиталя

Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

ЛЕКЦИЯ 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 1 Понятие производной функции Рассмотрим функцию у=f(), определенную на интервале (а;в) Возьмем любое значение х (а;в) и зададим аргументу

Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной. Основные

Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

58 Определенный интеграл Пусть на промежутке задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке произвольные числа, 3, n-, удовлетворяющие условию:

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Дифференцирование неявно заданной функции Рассмотрим функцию (,) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

ЛАБОРАТОРНАЯ РАБОТА 7 ОБОБЩЕННЫЕ ФУНКЦИИ I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Обозначим через D множество всех бесконечно дифференцируемых финитных функций действительного переменного. Это

Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Предел функции. Предел числовой последовательности Определение. Бесконечной числовой последовательностью (или просто числовой последовательностью называется функция f f (, определенная на множестве всех

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Величина называется функцией переменных величин n если каждой точке М n принадлежащей некоторому множеству X поставлено

ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f () d =, () = Функция f (,) задана в области G плоскости (,

Федеральное агентство по образованию Московский Государственный университет геодезии и картографии (МИИГАиК) МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по курсу ВЫСШАЯ МАТЕМАТИКА Числовые

Рассмотрим изменение функции при задании приращения только одному из ее аргументов – х i , и назовем его .

Определение 1.7. Частной производной функции по аргументу х i называется .

Обозначения: .

Таким образом, частная производная функции нескольких переменных определяется фактически как производная функции одной переменной – х i . Поэтому для нее справедливы все свойства производных, доказанные для функции одной переменной.

Замечание. При практическом вычислении частных производных пользуемся обычными правилами дифференцирования функции одной переменной, полагая аргумент, по которому ведется дифференцирование, переменным, а остальные аргументы – постоянными.

1. z = 2x ² + 3xy –12y ² + 5x – 4y +2,

2. z = x y ,

Геометрическая интерпретация частных производных функции двух переменных.

Рассмотрим уравнение поверхности z = f (x,y) и проведем плоскость х = const. Выберем на линии пересечения плоскости с поверхностью точку М (х,у) . Если задать аргументу у приращение Δу и рассмотреть точку Т на кривой с координатами (х, у+ Δу, z+ Δ y z ), то тангенс угла, образованного секущей МТ с положительным направлением оси Оу , будет равен . Переходя к пределу при , получим, что частная производная равна тангенсу угла, образованного касательной к полученной кривой в точке М с положительным направлением оси Оу. Соответственно частная производная равна тангенсу угла с осью Ох касательной к кривой, полученной в результате сечения поверхности z = f (x,y) плоскостью y = const.

Определение 2.1. Полным приращением функции u = f(x, y, z) называется

Определение 2.2. Если приращение функции u = f (x, y, z) в точке (x 0 , y 0 , z 0) можно представить в виде (2.3), (2.4), то функция называется дифференцируемой в этой точке, а выражение - главной линейной частью приращения или полным дифференциалом рассматриваемой функции.

Обозначения: du, df (x 0 , y 0 , z 0).

Так же, как в случае функции одной переменной, дифференциалами независимых переменных считаются их произвольные приращения, поэтому

Замечание 1. Итак, утверждение «функция дифференцируема» не равнозначно утверждению «функция имеет частные производные» - для дифференцируемости требуется еще и непрерывность этих производных в рассматриваемой точке.

4. Касательная плоскость и нормаль к поверхности. Геометрический смысл дифференциала.

Пусть функция z = f (x, y) является дифференцируемой в окрестности точки М (х 0 , у 0) . Тогда ее частные производные и являются угловыми коэффициентами касательных к линиям пересечения поверхности z = f (x, y) с плоскостями у = у 0 и х = х 0 , которые будут касательными и к самой поверхности z = f (x, y). Составим уравнение плоскости, проходящей через эти прямые. Направляющие векторы касательных имеют вид {1; 0; } и {0; 1; }, поэтому нормаль к плоскости можно представить в виде их векторного произведения: n = {- ,- , 1}. Следовательно, уравнение плоскости можно записать так:


где z 0 = .

Определение 4.1. Плоскость, определяемая уравнением (4.1), называется касательной плоскостью к графику функции z = f (x, y) в точке с координатами (х 0 , у 0 , z 0) .

Из формулы (2.3) для случая двух переменных следует, что приращение функции f в окрестности точки М можно представить в виде:

Следовательно, разность между аппликатами графика функции и касательной плоскости является бесконечно малой более высокого порядка, чем ρ, при ρ→ 0.

При этом дифференциал функции f имеет вид:

что соответствует приращению аппликаты касательной плоскости к графику функции . В этом состоит геометрический смысл дифференциала.

Определение 4.2. Ненулевой вектор, перпендикулярный касательной плоскости в точке М (х 0 , у 0) поверхности z = f (x, y) , называется нормалью к поверхности в этой точке.

В качестве нормали к рассматриваемой поверхности удобно принять вектор --n = { , ,-1}.