Какое вещество является самым распространенным во вселенной. Какой самый распространенный элемент во Вселенной? Где встречается самый распространенный элемент

  • 4.Характерные особенности эмпирического и теоритического уровней научных исследований.
  • 6.Роль естествознания в формировании научной картины мира и его вклад в развитие культуры мышления человечества.
  • 7.Естествознание как феномен общечеловеческой культуры. Фундамен-тальные естественнонаучные направления: предмет и методы исследо-вания.
  • 8.Причины, по которым знания, накопленные древними цивилизациями Вавилона, Египта, Китая, не могут считаться научными.
  • 9.Природные и социальные катаклизмы, способствовавшие зарождению истоков научного знания в Древней Греции.
  • 10.Принципы и правила истинного познания, заложенные Фалесом Милет-ским. Поиск первоначал и концепция атомистики (Левкипп и Демокрит).
  • 12.Основы учения о движении тел по Аристотелю. Первая система мироздания Аристотеля – Птолемея.
  • 14.Причины угасания интереса к научному знанию, расцвет монотеистических религий, роль арабских и восточных народов в сохранении и развитии древнегреческих знаний
  • 15.Причины разработки критериев научного знания в Средние века. По-следующие вехи в развитии научного метода, его составляющие и его творцы
  • 20.Типы и механизмы фундаментальных взаимодействий в природе.
  • 21.Проявления фундаментальных взаимодействий в механике, термодинамике, ядерной физике, химии, космологии.
  • 22.Проявления фундаментальных взаимодействий и структурные уровни организации материи.
  • 26.Специфика законов природы в физике, химии, биологии, геологии, космологии.
  • 27.Базовые принципы, лежащие в основе картин мироздания от Аристотеля до наших дней.
  • 32.Современная реализация атомистической концепции Левкиппа – Демокрита. Поколения кварков и лептонов. Промежуточные бозоны как переносчики фундаментальных взаимодействий.
  • 34.Строение химических элементов, синтез трансурановых элементов.
  • 35.Атомно-молекулярный «конструктор» строения вещества. Различие физического и химического подходов в изучении свойств вещества.
  • 40.Основные задачи космологии. Решение вопроса о происхождении Вселенной на разных этапах развития цивилизации.
  • 41.Физические теории, послужившие основой для создания теории «горячей» Вселенной г.А. Гамова.
  • 42.Причины незначительной продолжительности во время начальных «эр» и «эпох» в истории Вселенной.
  • 43.Основные события, происходившие в эру квантовой гравитации. Проблемы «моделирования» этих процессов и явлений.
  • 44.Объяснить с энергетической точки зрения, почему Эпоха адронов предшествовала Эпохе лептонов.
  • 45.Энергии (температуры), при которых произошло отделение излучения от вещества, и Вселенная стала «прозрачной».
  • 46.Строительный материал для формирования крупномасштабной структуры Вселенной.
  • 49.Cвойства черных дыр и их обнаружения себя во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.
  • 51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.

    Физическая теория эволюции Вселенной, в основе которой лежит предположение о том, что до того, как в природе появились звезды, галактики и другие астрономические объекты, вещество представляло собой быстро расширяющуюся и первоначально очень горячую среду. Предположение о том, что расширение Вселенной началось с "горячего" состояния, когда вещество представляло собой смесь различных взаимодействующих между собой элементарных частиц высоких энергий, было впервые выдвинуто Г.А.Гамовым в 1946 г. В настоящее время Г.В.Т. считается общепризнанной, Двумя самыми важными наблюдательными подтверждениями этой теории является обнаружение реликтового излучения, предсказанного теорией, и объяснение наблюдаемого соотношения между относительной массой водорода и гелия в природе.

    51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.

    Несмотря на то, что с момента запуска в космос первого космического аппарата прошло уже несколько десятилетий, большинство исследуемых астрономами небесных объектов являются пока недосягаемыми. Между тем, даже о самых отдалённых планетах солнечной системы и их спутниках собрано достаточно сведений.

    Астрономам часто приходится применять для исследования небесных тел дистанционные способы. Одним из самых распространённых является спектральный анализ. При помощи него удаётся определить приблизительный химический состав атмосферы планет и даже их поверхности.

    Дело в том, что атомы различных веществ излучают энергию в определённом диапазоне волн. Измерив энергию, которая выделяется в определённом спектре, специалисты могут определить и общую их массу, а соответственно, и то вещество, которое создает излучение.

    Однако чаще всего при определении точного химического состава возникают некоторые трудности. Атомы вещества могут находиться в таких условиях, что их излучение трудно наблюдать, поэтому необходимо учитывать некоторые побочные факторы (например, температуру объекта).

    Спектральные линии помогают, дело в том, что каждый элемент имеет определенный цвет спектра и рассматривая какую нибудь планету (звезду) ну в общем объект, при помощи специальных приборов - спектрографов, мы можем увидить их испускаемый цвет или ряд цветов! Потом по табличке специальной смотрится, какому веществу эти линии принадлежат! ! Наука этим занимающаяся - спектроскопия

    Спектроскопия - раздел физики, посвященный изучению спектров электромагнитного излучения.

    Спектральный анализ - совокупность методов определения состава (например, химического) объекта, основанный на изучении свойств приходящего от него излучения (в частности, света) . Оказалось, что атомы каждого химического элемента имеют строго определенные резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектре видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и даже его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Различают атомный и молекулярный спектральный анализ, эмиссионный ”по спектрам испускания” и абсорбционный ”по спектрам поглощения”.

    Оптический спектральный анализ характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг) , необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000-10000°С. В качестве источников возбуждения спектров при анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Спектральный анализ - чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др. Метод был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле.

    Распространённость химических элементов, мера того как распространены или редки элементы по сравнению с другими элементами в данной среде. Распространённость в различных случаях могут измерять массовой долей, мольной долей или объёмной долей. Распространённость химических элементов часто представляется кларками.

    Например, массовая доля распространённости кислорода в воде составляет около 89 %, потому что это доля массы воды, которой является кислород. Однако, мольная доля распространённости кислорода в воде только 33 %, потому что только 1 из 3 атомов в молекуле воды является атомом кислорода. Во Вселенной в целом, и в атмосферах газовых планет-гигантов, таких как Юпитер, массовая доля распространенности водорода и гелия около 74 % и 23-25 % соответственно, в то время атомная мольная доля элементов ближе к 92 % и 8 %.

    Однако, так как водород является двухатомным, а гелий - нет, в условиях внешней атмосферы Юпитера, молекулярная мольная доля водорода составляет около 86 %, а гелия - 13 %.

    "

    Безусловно, что в нашем понимании это нечто единое целое. Но имеющее свою структуру и состав. Сюда относятся все небесные тела и объекты, материя, энергия, газ, пыль и многое другое. Все это образовалось и существует, независимо от того, видим ли мы это или ощущаем.

    Учёные давно рассматривают такие вопросы: Что же образовало такую вселенную? И какие элементы её наполняют?

    Сегодня мы поговорим о том, какой элемент самый распространённый во вселенной.

    Оказывается этот химический элемент самый лёгкий в мире. Кроме тго, его одноатомная форма составляет примерно 87% всего состава вселенной. Помимо того, он содержится в большинстве молекулярных соединений. Даже в воде, или, к примеру, он является частью органических веществ. Вдобавок водород выступает особенно важной составляющей частью кислотно-основных реакций.
    Кроме того, элемент растворим в большинстве металлах. Что интересно, водород не обладает запахом, цветом и вкусом.


    В процессе изучения, учёные называли водород горючим газом.
    Как только не определяли его. В своё время он носил имя рождающий воду, а затем водотворное вещество.
    Лишь в 1824 году ему присвоили название водород.

    Во водород входит в состав 88,6% всех атомов. Остальное в большем количестве составляет гелий. И лишь малая часть это прочие элементы.
    Следственно, звёзды и другие газы имеют в своём составе в основном водород.
    Кстати, опять же он имеется и в звёздных температурах. Однако в виде плазмы. А в космическом пространстве он представлен в виде молекул, атомов и ионов. Интересно, что водород способен формировать молекулярные облака.


    Характеристика водорода

    Водород уникальный элемент, так как не имеет нейтрон. Он содержит лишь один протон и электрон.
    Как указывалось, это самый лёгкий газ. Важно, что чем меньше масса молекул, тем выше их скорость. На это не влияет даже температура.
    Теплопроводность водорода одна из высоких среди всех газов.
    Помимо всего прочего, он хорошо растворим в металлах, что влияет на его способность диффундировать через них. Иногда процесс приводит к разрушению. К примеру, взаимодействие водорода и углерода. В этом случае происходит декарбонизация.

    Появление водорода

    Возник во вселенной после Большого взрыва. Как и все химические элементы. По теории, в первые микросекунды после взрыва температура вселенной была выше 100 млрд градусов. Что образовало связь трёх кварков. В свою очередь, эта взаимодействие создало протон. Таким образом, возникло ядро атома водорода. В процессе расширения температура упала, и кварки образовали протоны и нейтроны. Так, на самом деле, возник водород.


    В промежутке от 1 до 100 секунд после образования вселенной часть протонов и нейтронов соединилась. Тем самым образовав другой элемент-гелий.
    В дальнейшем расширение пространства и как следствие снижение температуры приостановило соединительные реакции. Что важно, они вновь запустились внутри звёзд. Так образовались атомы других химических элементов.
    В результате получается, что водород и гелий являются основными двигателями образования остальных элементов.


    Гелий вообще является вторым по распространённости элементом во вселенной. Его доля составляет 11,3% всего космического пространства.

    Свойства гелия

    Он, так же как и водород, не имеет запаха, цвета и вкуса. Вдобавок, это второй по лёгкости газ. Но его температура кипения самая низкая из всех известных.

    Гелий — это инертный, нетоксичный и одноатомный газ. Теплопроводность его высокая. По этой характеристике он вновь стоит на втором месте после водорода.
    Добыча гелия осуществляется методом разделения при низкой температуре.
    Интересно, что раньше гелий считали металлом. Но в процессе изучения определили, что это газ. При том, основной в составе вселенной.


    Все элементы на Земле, за исключением водорода и гелия, породила миллиарды лет назад алхимия звезд, часть которых является ныне неприметными белыми карликами где-то на другой стороне Млечного Пути. Азот наших ДНК, кальций наших зубов, железо нашей крови, углерод наших яблочных пирогов созданы в недрах сжимающихся звезд.

    Мы сотворены из звездного вещества.
    Карл Саган

    Применение элементов

    Человечество научилось добывать и применять с пользой для себя химические элементы. Так водород и гелий применяют во многих сферах деятельности. Например в:

    • пищевой промышленности;
    • металлургии;
    • химической промышленности;
    • нефтепереработке;
    • производстве электроники;
    • косметической промышленности;
    • геологии;
    • даже в военной сфере и др.

    Как видно, эти элементы играют важную роль в жизни вселенной. Очевидно, само наше существование напрямую зависит от них. Мы знаем, что ежеминутно происходит рост и движение . И несмотря на то, что они по отдельности небольшие, все вокруг основано из этих элементов.
    Поистине, водород и гелий, также как другие химические элементы, уникальны и удивительны. Пожалуй с этим невозможно поспорить.

    Ученые объясняют возникновение химических элементов теорией Большого Взрыва. Согласно ей, Вселенная образовалась после Большого Взрыва огромного огненного шара, который разбросал во всех направлениях частицы материи и потоки энергии. Хотя, если во Вселенной самые распространенные химические элементы это Водород и Гелий, то на планете Земля - это Кислород и Кремний.

    Из всего числа известных химических элементов, на Земле найдено 88 таких элементов, среди которых самыми распространенными в земной коре являются Кислород (49,4%), Кремний (25,8%), также Алюминий (7,5%), Железо, Калий и другие химические элементы, встречаемые в природе. На эти элементы приходится 99% массы всей Земной оболочки.

    Состав элементов в Земной коре отличается от элементов, находящихся в мантии и ядре. Так ядро Земли состоит в основном из железа и никеля, а поверхность Земли насыщена кислородом.

    Самые распространенные химические элементы на Земле

    (49,4% в Земной коре)

    Кислород используют для дыхания почти все живые организмы на Земле. Десятки миллиардов тонн Кислорода расходуются каждый год, но в воздухе его все равно не становится меньше. Ученые считают, что зеленые растения на планете выделяют Кислорода почти в шесть раз больше, чем он расходуется...

    (25,8% в Земной коре)

    Роль Кремния в геохимии Земли огромна, примерно 12% литосферы составляет кремнезем SiO2 (все твердые и прочные породы состоят на треть из кремния), а число минералов, в которых содержится кремнезем больше 400. На Земле Кремний в свободном виде не встречается, только в соединениях...

    (7,5% в Земной коре)

    В чистом виде в природе Алюминий не встречается. Алюминий входит в состав гранитов, глины, базальтов, полевого шпата и др. и содержится во многих минералах...

    (4,7% в Земной коре)

    Этот химический элемент очень важен для живых организмов, так как является катализатором дыхательного процесса, участвует в доставке кислорода к тканям и присутствует в гемоглобине крови. В природе Железо встречается в руде (магнетит, гематит, лимонит и пирит) и в более 300 минералах (сульфиды, силикаты, карбонаты и др.)...

    (3,4% в Земной коре)

    В чистом виде в природе не встречается, в соединениях содержится в почве, во всех неорганических связующих веществах, животных, растениях и природной воде. Ионы Кальция в крови играют важную роль в регулировании работы сердца, и позволяют ей свертываться на воздухе. При недостатке Кальция у растений, страдает корневая система...

    (2,6% в Земной коре)

    Натрий распространен в верхней части земной коры, в природе встречается в виде минералов: галита, мирабилита, криолита и буры. Входит в состав человеческого организма, в крови человека содержится около 0.6% КаС1, за счет которого поддерживается нормальное осмотическое давление крови. В животных Натрия содержится больше чем в растениях...

    (2,4% в Земной коре)

    В природе не встречается в чистом виде, только в соединениях, содержится во многих минералах: сильвине, сильвините, карналлите, алюмосиликатах и др. В морской воде содержится примерно 0,04% калия. Калий быстро окисляется на воздухе и легко вступает в химические реакции. Является важным элементом развития растений, при его недостатке они желтеют, а семена теряют всхожесть...

    (1,9% в Земной коре)

    В природе Магний не встречается в чистом виде, но входит в состав многих минералов: силикатов, карбонатов, сульфатов, алюмосиликатов и др. Кроме этого Магния много в морской воде, подземных водах, растениях и природных рассолах...

    (0,9% в Земной коре)

    Водород входит в состав атмосферы, всех органических веществ и живых клеток. Его доля в живых клетках по числу атомов составляет 63%. Водород входит в состав нефти, вулканических и природных горючих газов, немного Водорода выделяют зеленые растения. Образуется при разложении органических веществ и при коксовании угля...

    (0,6% в Земной коре)

    В природе не встречается в свободном виде, часто в виде двуокиси TiO2 или её соединений (титанатов). Содержится в поч¬ве, в животных и растительных организмах и входит в состав больше 60 минералов. В биосфере Титан рессеян, в морской воде его 10-7%.Титан содержится и в зернах, плодах, стеблях растений, в тканях животных, молоке, куриных яйцах и в человеческом организме...

    Самые редкие химические элементы на Земле

    • Лютеций (0,00008 % в Земной коре по массе) . Для получения его выделяют из минералов вместе с другими тяжёлыми редкими элементами.
    • Иттербий (3,310-5% в Земной коре по массе) . Содержится в бастензите, монаците, гадолините, талените и др. минералах.
    • Тулий (2,7 .10−5 масс. % в Земной коре по массе) . Так же как и другие редкоземельные элементы содержится в минералах: ксенотим, монацит, эвксенит, лопарит и др.
    • Эрбий (3,3 г/т в Земной коре по массе) . Добывается из монацита и бастенизита, так же как и некоторые редкие химические элементы.
    • Гольмий (1,3.10−4 % в Земной коре по массе) . Вместе с другими редкоземельными элементами содержится в минералах монаците, эвксените, бастенизите, апатите и гадолините.

    Очень редкие химические элементы применяют в радиоэлектронике, атомной технике, машиностроении, метталургии и химической промышленности и др.

    По мнению большинства ученых, возникновение химических элементов во вселенной произошло после Большого Взрыва. При этом, каких-то веществ образовалось больше, каких-то меньше. В нашем топе представлен список самых распространенных химических элементов на Земле и во вселенной.

    Лидером рейтинга становится водород. В таблице Менделеева он обозначен символом H и атомным номером 1. Открыт в 1766 году Г. Кавендишем. А еще через 15 лет этот же ученый выяснил, что водород участвует в образовании большинства веществ на планете.

    Водород не только наиболее распространенный, но и самый взрывной и легкий химический элемент во вселенной в природе. В земной коре его объем равен 1%, но количество атомов – 16%. Данный элемент входит во множество природных соединений, например, в нефть, природный газ, уголь.

    В свободном состоянии водород практически не встречается. На поверхности Земли присутствует в некоторых вулканических газах. В воздухе он есть, но в очень малых дозах. Водородом занято почти половина строения звезд, большая часть межзвездной сферы и газов туманностей.


    Второе место среди наиболее распространенных элементов во вселенной занимает гелий. Он же считается вторым по легкости. Кроме того, у гелия самая низкая температура кипения среди всех известных веществ.

    Открыт в 1868 году французским астрономом П. Жансеном, обнаружившим яркую желтую линию в околосолнечной атмосфере. А в 1895 году английский химик У. Рамзай доказал существование этого элемента на Земле.


    За исключением экстремальных условий, гелий представлен только в виде газа. В космосе он был образован в первые мгновения после Большого взрыва. Сегодня гелий появляется при термоядерном синтезе с водородом в звездных глубинах. На Земле образуется после распада тяжелых элементов.

    Самым распространенным элементом в земной коре (49,4%) является кислород. Обозначается символом O и номером 8. Незаменим для существования человека.

    Кислород – химически неактивный неметалл. При стандартных условиях находится в бесцветном газообразном состоянии, без вкуса и запаха. Молекула включает два атома. В жидком виде отличается светло-голубым оттенком, в твердом выглядит как как кристаллы с синеватым отливом.


    Кислород необходим всем живым существам на Земле. Он участвует в круговороте веществ свыше 3 млрд лет. Играет значимую роль в хозяйстве и природе:

    • Участвует в фотосинтезе растений;
    • Поглощается живыми организмами при дыхании;
    • Выступает в роли окислителя в процессах брожения, гниения, ржавления;
    • Содержится в органических молекулах;
    • Необходим для получения ценных веществ органического синтеза.

    В сжиженном состоянии кислород применяют для резки и сварки металлов, подземных и подводных работ, действий на большой высоте в безвоздушном пространстве. Кислородные подушки незаменимы при выполнении лечебных манипуляций.

    На 4 месте азот – двухатомный бесцветный и безвкусный газ. Существует не только на нашей, но и на нескольких других планетах. Из него состоит почти 80% земной атмосферы. Даже человеческое тело содержит до 3% данного элемента.


    Помимо газообразного, существует жидкий азот. Он широко используется в строительстве, промышленности, лечебном деле. Его применяют при охлаждении техники, заморозке органики, избавления от бородавок. В жидком виде азот не взрывоопасен и не токсичен.

    Элемент блокирует окисление и гниение. Широко применяется в шахтах для формирование взрывобезопасной среды. В химическом производстве с его помощью создают аммиак, удобрения, красители, в кулинарии используют как хладагент.

    Неон – это инертный и бесцветный атомный газ без запаха. Открыт в 1989 году англичанами У. Рамзаем и М. Траверсом. Выведен из разжиженного воздуха путем исключения других элементов.


    Название газа переводится как «новый». Во Вселенной распределен крайне неравномерно. Максимальная концентрация выявлена на горячих звездах, в воздухе внешних планет нашей системы и в газовых туманностях.

    На Земле неон в основном содержится в атмосфере, в других частях его ничтожно мало. Объясняя неоновую скудность нашей планеты, ученые выдвинули гипотезу, что когда-то земной шар лишился своей первичной атмосферы, а вместе с ней и основного объема инертных газов.

    На 6 месте в списке самых распространенных химических элементов на Земле находится углерод. В таблице Менделеева обозначен буквой C. Обладает необычайными свойствами. Является ведущим биогенным элементом планеты.

    Известен с давних времен. Входит в структуру каменного угля, графита, алмазов. Содержание в земной тверди – 0,15%. Не слишком большая концентрация объясняется тем, что в природе углерод подвергается постоянной циркуляции.


    Существует несколько минералов, содержащих данный элемент:

    • Антрацит;
    • Нефть;
    • Доломит;
    • Известняк;
    • Горючий сланец;
    • Торф;
    • Бурый и каменный уголь;
    • Природный газ;
    • Битум.

    Хранилищем углеродных групп являются живые существа, растения и воздух.

    Кремний – неметалл, часто встречающийся в земной коре. В свободном виде выведен в 1811 году Ж. Тенаром и Ж. Гей-Люссаком. Содержание в планетной оболочке – 27,6-29,5% по массе, в океанической воде – 3 мг/л.


    О множестве соединений кремния было известно еще в древние времена. Но чистый элемент долго оставался за гранью человеческих познаний. Самыми популярными соединениями были поделочные и драгоценные камни на базе оксида кремния:

    • Горный хрусталь;
    • Оникс;
    • Опал;
    • Халцедон;
    • Хризопраз и т.д.

    В природе элемент содержится в:

    • Горных массивных породах и залежах;
    • Растениях и морских жителях;
    • Глубоко в почве;
    • В организмах живых существ;
    • В низу водоемов.

    Кремний играет огромную роль в формировании человеческого организма. Ежедневно внутрь должно попадать минимум 1 грамм элемента, иначе начнут появляться неприятные недуги. Тоже самое можно сказать про растения и животных.

    Магний – ковкий, легкий металл серебристого оттенка. В таблице Менделеева отмечен символом Mg. Получен в 1808 году англичанином Г. Дэви. Занимает 8 место по объему в земной коре. Природными источниками являются минеральные отложения, рассолы и морская вода.

    В стандартном состоянии покрыт слоем оксида магния, который распадается при температуре +600-650 0 C. При сгорании выделяет ярко-белое пламя с формированием нитрида и оксида.


    Металлический магний используется во многих сферах:

    • При регенерации титана;
    • В получении легких литейных сплавов;
    • В создании зажигательных и осветительных ракет.

    Магниевые сплавы – важнейший конструкционный материал в транспортной и авиационной промышленности.

    Магний не зря называют «металлом жизни». Без него невозможно большинство физиологических процессов. Он играет ведущую роль в функционировании нервной и мышечной ткани, участвует в липидном, белковом и углеводном обмене.

    Железо – это ковкий серебристо-белый металл с высоким уровнем химической реакции. Обозначается буквами Fe. Быстро ржавеет при повышенных температурах/влажности. Воспламеняется в очищенном кислороде. Способен самовозгораться в мелкодисперном воздухе.


    В обиходе железом именуют его сплавы с минимальным объемом добавок, сохраняющие податливость чистого металла:

    • Сталь;
    • Чугун;
    • Легированную сталь.

    Есть мнение, что железо составляет основной процент земного ядра. Имеет несколько уровней окисления, что является важнейшей геохимической чертой.

    Десятое место в списке самых распространенных химических элементов на Земле занимает сера. Обозначается буквой S. Проявляет неметаллические характеристики. В самородном состоянии выглядит как светло-желтый порошок с характерным ароматом либо блестящие кристаллы стеклянно-желтого цвета. В регионах древнего и новейшего вулканизма встречаются рассыпчатые залежи серы.

    Без серы невозможно проведения многих промышленных операций:

    • Выпуск препаратов для сельскохозяйственных нужд;
    • Придание особых характеристик некоторым сортам стали;
    • Образование серной кислоты;
    • Выработка резины;
    • Производство сульфатов и другое.

    Медицинская сера содержится в кожных мазях, ею лечат ревматизм и подагру, включают в состав косметических препаратов по уходу за кожей. Она применяется в изготовлении гипса, слабительных лекарств и средств от гипертонии.

    Видео

    Это была сенсация — оказывается, важнейшее вещество на Земле состоит из двух не менее важных химических элементов. «АиФ» решил заглянуть в таблицу Менделеева и вспомнить, благодаря каким же элементам и соединениям существует Вселенная, а также жизнь на Земле и человеческая цивилизация.

    ВОДОРОД (H)

    Где встречается: самый распространённый элемент во Вселенной, её главный «строительный материал». Из него состоят звёзды, в том числе Солнце. Благодаря термоядерному синтезу с участием водорода Солнце будет греть нашу планету ещё 6,5 млрд. лет.

    Чем полезен: в промышленности — при производстве аммиака, мыла и пластмасс. Большие перспективы у водородной энергетики: этот газ не загрязняет окружающую среду, т. к. при сгорании даёт только водяной пар.

    УГЛЕРОД (C)

    Где встречается: любой организм в значительной степени построен из углерода. В теле человека этот элемент занимает около 21%. Так, наши мышцы состоят из него на 2/3. В свободном состоянии в природе встречается в виде графита и алмаза.

    Чем полезен: пища, энергоносители и мн. др. Класс соединений на основе углерода огромен — углеводороды, белки, жиры и т. д. Этот элемент незаменим в нанотехнологиях.

    АЗОТ (N)

    Где встречается: атмосфера Земли на 75% состоит из азота. Входит в состав белков, аминокислот, гемоглобина и др.

    Чем полезен: необходим для существования животных и растений. В промышленности используется как газовая среда для упаковки и хранения, хладагент. С его помощью синтезируют разнообразные соединения — аммиак, удобрения, взрывчатые вещества, красители.

    КИСЛОРОД (O)

    Где встречается: Самый распространённый на Земле элемент, на его долю приходится около 47% массы твёрдой земной коры. Морские и пресные воды на 89% состоят из кислорода, атмосфера — на 23%.

    Чем полезен: Благодаря кислороду живые существа могут дышать, без него не был бы возможен огонь. Этот газ широко используется в медицине, металлургии, пищевой промышленности, энергетике.

    УГЛЕКИСЛЫЙ ГАЗ (CO2)

    Где встречается: В атмосфере, в морской воде.

    Чем полезен: Благодаря этому соединению растения могут дышать. Процесс поглощения углекислоты из воздуха называется фотосинтезом. Это основной источник биологической энергии. Стоит напомнить, что энергия, которую мы получаем при сжигании ископаемого топлива (угля, нефти, газа), накоплена в недрах земли на протяжении миллионов лет именно благодаря фотосинтезу.

    ЖЕЛЕЗО (Fe)

    Где встречается: один из самых распространённых в Солнечной системе элементов. Из него состоят ядра планет земной группы.

    Чем полезен: металл, с древних времён применяемый человеком. Целая историческая эпоха получила название Железного века. Сейчас до 95% мирового производства металлов приходится на железо, это основной компонент сталей и чугунов.

    СЕРЕБРО (Ag)

    Где встречается: Один из дефицитных элементов. Раньше встречался в природе в самородном виде.

    Чем полезен: С середины XIII века стал традиционным материалом для изготовления посуды. Обладает уникальными свойствами, поэтому применяется в различных отраслях — в ювелирном деле, в фотографии, электротехнике и электронике. Известны и дезинфицирующие свойства серебра.

    ЗОЛОТО (Au)

    Где встречается: раньше встречался в природе в самородном виде. Добывается на приисках.

    Чем полезен: важнейший элемент мировой финансовой системы, т. к. запасы его невелики. Издавна использовалось в качестве денег. В настоящее время все банковские резервы золота оцениваются

    в 32 тыс. тонн — если сплавить их воедино, получится куб со стороной всего лишь 12 м. Используется в медицине, микроэлектронике, при ядерных исследованиях.

    КРЕМНИЙ (Si)

    Где встречается: По распространённости в земной коре этот элемент занимает второе место (27-30% всей массы).

    Чем полезен: Кремний — основной материал для электроники. Также применяется в металлургии и в производстве стекла и цемента.

    ВОДА (H2O)

    Где встречается: Наша планета на 71% покрыта водой. Тело человека на 65% состоит из этого соединения. Вода есть и в космическом пространстве, в теле комет.

    Чем полезна: Имеет ключевое значение в создании и поддержании жизни на Земле, потому что благодаря молекулярным свойствам является универсальным растворителем. У воды много уникальных свойств, о которых мы не задумываемся. Так, если бы она при замерзании не увеличивалась в объёме, жизнь просто не зародилась бы: водоёмы каждую зиму промерзали бы до дна. А так, расширяясь, более лёгкий лёд остаётся на поверхности, сохраняя под собой жизнеспособную среду.

    Все мы знаем, что водород наполняет нашу Вселенную на 75%. Но знаете ли вы, какие еще есть химические элементы, не менее важные для нашего существования и играющие значительную роль для жизни людей, животных, растений и всей нашей Земли? Элементы из этого рейтинга формируют всю нашу Вселенную!

    10. Сера (распространенность относительно кремния – 0.38)


    Этот химический элемент в таблице Менделеева значится под символом S и характеризуется атомным номером 16. Сера очень распространена в природе.

    9. Железо (распространенность относительно кремния – 0.6)

    Обозначается символом Fe, атомный номер – 26. Железо очень часто встречается в природе, особенно важную роль оно играет в формировании внутренней и внешней оболочки ядра Земли.

    8. Магний (распространенность относительно кремния – 0.91)

    В таблице Менделеева магний можно найти под символом Mg, и его атомный номер – 12. Что самое удивительное в этом химическом элементе, так это то, что он чаще всего выделяется при взрыве звезд в процессе их преобразования в сверхновые тела.

    7. Кремний (распространенность относительно кремния – 1)



    Обозначается как Si. Атомный номер кремния – 14. Этот серо-голубой металлоид очень редко встречается в земной коре в чистом виде, но довольно распространен в составе других веществ. Например, его можно обнаружить даже в растениях.

    6. Углерод (распространенность относительно кремния – 3.5)

    Углерод в таблице химических элементов Менделеева значится под символом С, его атомный номер – 6. Самой знаменитой аллотропной модификацией углерода являются одни из самых желанных драгоценных камней в мире – алмазы. Углерод активно применяют и в других в промышленных целях более будничного назначения.

    5. Азот (распространенность относительно кремния – 6.6)

    Символ N, атомный номер 7. Впервые открытый шотландским врачом Дэниелом Рутерфордом (Daniel Rutherford), азот чаще всего встречается в форме азотной кислоты и нитратов.

    4. Неон (распространенность относительно кремния – 8.6)



    Обозначается символом Ne, атомный номер — 10. Не секрет, что именно этот химический элемент ассоциируется с красивым свечением.

    3. Кислород (распространенность относительно кремния – 22)

    Химический элемент под символом О и с атомным номером 8, кислород незаменим для нашего существования! Но это не значит, что он присутствует только на Земле и служит только для человеческих легких. Вселенная полна сюрпризов.

    2. Гелий (распространенность относительно кремния – 3.100)

    Символ гелия – He, атомный номер – 2. Он бесцветен, не имеет запаха и вкуса, не ядовит, и его точка кипения – самая низкая среди всех химических элементов. А еще благодаря ему шарики взмывают ввысь!

    1. Водород (распространенность относительно кремния – 40.000)

    Истинный номер один в нашем списке, водород находится в таблице Менделеева под символом Н и обладает атомным номером 1. Это самый легкий химический элемент периодической таблицы и самый распространенный элемент во всей изученной человеком Вселенной.

    Самый простой и распространенный элемент

    Водород имеет только один протон и один электрон (это единственный элемент без нейтрона). Он является самым простым элементом во Вселенной, что объясняет, почему он также самый распространенный, — сказала Найман. Тем не менее изотоп водорода, называемый дейтерием, содержит один протон и один нейтрон, а другой, известный как тритий, имеет один протон и два нейтрона.

    В звездах атомы водорода сливаются, чтобы создать гелий - второй наиболее распространенный элемент во Вселенной. Гелий имеет два протона, два нейтрона и два электрона. Вместе гелий и водород составляют 99,9 процента всей известной материи во Вселенной.

    Тем не менее во Вселенной примерно в 10 раз больше водорода, чем гелия, как говорит Найман. «Кислорода, который является третьим самым распространенным элементом, примерно в 1000 раз меньше, чем водорода», — добавила она.

    Если говорить в общем, то чем выше атомный номер элемента, тем меньшее его количество можно найти во Вселенной.

    Водород в составе Земли

    Состав Земли, однако, отличается от того, который имеет Вселенная. Например, кислород является наиболее распространенным элементом по весу в земной коре. За ним следуют кремний, алюминий и железо. В человеческом организме наиболее распространенным элементом по весу является кислород, а затем — углерод и водород.

    Роль в человеческом теле

    Водород имеет ряд ключевых ролей в человеческом теле. Водородные связи помогают ДНК оставаться скрученным. Кроме того, водород способствует поддержанию правильного рН в желудке и других органах. Если ваш желудок приобретает слишком щелочную среду, выпускается водород, поскольку он связан с регулированием этого процесса. Если же среда в желудке слишком кислая, водород будет связываться с другими элементами.

    Водород в составе воды

    Кроме того, именно водород позволяет льду плавать на поверхности воды, так как водородные связи увеличивают расстояние между ее замороженными молекулами, что делает их менее плотными.

    Как правило, вещество является более плотным, когда оно находится в твердом состоянии, а не жидком, сказала Найман. Вода является единственным веществом, которое становится менее плотным в твердом виде.

    В чем опасность водорода

    Тем не менее водород также может быть опасным. Его реакция с кислородом привела к катастрофе дирижабля «Гинденбург», который убил 36 человек в 1937 году. Кроме того, водородные бомбы могут быть невероятно разрушительными, хотя их никогда не использовали в качестве оружия. Тем не менее их потенциал продемонстрировали в 1950-х годах такие страны, как США, СССР, Великобритания, Франция и Китай.

    Водородные бомбы, как и атомные, используют сочетание ядерного синтеза и реакций деления, что приводит к разрушениям. При взрыве они создают не только механические ударные волны, но и радиацию.