Ная производная. Производная функции
Наверное, понятие производной знакомо каждому из нас ещё со школы. Обычно у учеников возникают трудности с пониманием этой, несомненно, очень важной вещи. Она активно применяется в различных областях жизни людей, и многие инженерные разработки были основаны именно на математических расчётах, полученных с помощью производной. Но прежде чем перейти к разбору того, что же такое производные чисел, как их вычислять и где они нам пригодятся, окунёмся немного в историю.
История
Являющееся основой математического анализа, было открыто (лучше даже сказать "изобретено", потому что в природе оно как таковое не существовало) Исааком Ньютоном, которого мы все знаем по открытию закона всемирного тяготения. Именно он впервые применил в физике это понятие для связывания природы скорости и ускорения тел. И многие учёные до сих пор восхваляют Ньютона за это великолепное изобретение, ведь по сути он изобрёл основу дифференциального и интегрального исчисления, фактически основу целой области математики под названием "математический анализ". Будь в то время Нобелевская премия, Ньютон с большой вероятностью получил бы её несколько раз.
Не обошлось и без других великих умов. Кроме Ньютона над развитием производной и интеграла потрудились такие именитые гении математики, как Леонард Эйлер, Луи Лагранж и Готфрид Лейбниц. Именно благодаря им мы получили теорию в таком виде, в котором она существует по сей день. Кстати, это Лейбниц открыл геометрический смысл производной, которая оказалась ничем иным, как тангенсом угла наклона касательной к графику функции.
Что же такое производные чисел? Немного повторим то, что проходили в школе.
Что такое производная?
Определять это понятие можно несколькими разными способами. Самое простое объяснение: производная - это скорость изменения функции. Представим график какой-нибудь функции y от x. Если это не прямая, то она имеет некоторые изгибы в графике, периоды возрастания и убывания. Если брать какой-нибудь бесконечно малый промежуток этого графика, он будет представлять собой отрезок прямой. Так вот, отношение размера этого бесконечно малого отрезка по координате y к размеру по координате x и будет являться производной данной функции в данной точке. Если рассматривать функцию в целом, а не в конкретной точке, то мы получим функцию производной, то есть некую зависимость игрек от икс.
К тому же кроме как скорости изменения функции есть ещё и геометрический смысл. О нём мы сейчас и поговорим.
Геометрический смысл
Производные чисел сами по себе представляют собой некое число, которое без должного понимания не несёт никакого смысла. Оказывается, производная не только показывает скорость роста или уменьшения функции, а также тангенс угла наклона касательной к графику функции в данной точке. Не совсем понятное определение. Разберём его поподробнее. Допустим, у нас есть график какой-либо функции (для интереса возьмём кривую). На ней есть бесконечное множество точек, но есть такие области, где только одна единственная точка имеет максимум или минимум. Через любую такую точку можно провести прямую, которая была бы перпендикулярна графику функции в этой точке. Такая линия будет называться касательной. Допустим, мы провели её до пересечения с осью OX. Так вот, полученный между касательной и осью OX угол и будет определяться производной. А точнее, тангенс этого угла будет равняться ей.
Поговорим немного о частных случаях и разберём производные чисел.
Частные случаи
Как мы уже говорили, производные чисел - это значения производной в конкретной точке. Вот например, возьмём функцию y=x 2 . Производная х - число, а в общем случае - функция, равная 2*x. Если нам необходимо вычислить производную, скажем, в точке x 0 = 1, то получаем y"(1)=2*1=2. Всё очень просто. Интересный случай представляет производная Вдаваться в подробное объяснение того, что такое комплексное число, мы не будем. Скажем лишь, что это число, которое содержит в себе так называемую мнимую единицу - число, квадрат которого равен -1. Вычисление такой производной возможно только при наличии следующих условий:
1) Должны существовать частные производные первого порядка от действительной и мнимой части по игрек и по икс.
2) Выполняются условия Коши-Римана, связанные с равенством частных производных, описанных в первом пункте.
Другим интересным случаем, хотя и не таким сложным как предыдущий, является производная отрицательного числа. На самом деле любое отрицательное число можно представить как положительное, умноженное на -1. Ну а производная постоянной и функции равна постоянной, умноженной на производную функции.
Интересно будет узнать о роли производной в повседневной жизни, и именно это сейчас и обсудим.
Применение
Наверное, каждый из нас хоть раз в жизни ловит себя на мысли, что математика вряд ли пригодится ему. А такая сложная штука, как производная, наверное, вообще не имеет применения. На самом деле, математика - и все её плоды развивает в основном физика, химия, астрономия и даже экономика. Производная положила начало который дал нам возможность делать выводы из графиков функций, и мы научились интерпретировать законы природы и обращать их в свою пользу благодаря ему.
Заключение
Конечно, не каждому, возможно, пригодится производная в реальной жизни. Но математика развивает логику, которая уж точно будет нужна. Не зря ведь математику называют царицей наук: из неё складываются основы понимания других областей знаний.
Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики . Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы . Также оттуда нам потребуется Таблица производных , ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.
Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная . Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.
И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы , например, освоить труднее.
Советую следующий порядок изучения темы : во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции . Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная . Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной . Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций .
Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.
Собственно, сразу рассмотрим пример:
Пример 1
Найти производную функции
Решение:
Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .
Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию . Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием .
Обозначения : Производную обозначают или .
ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!
Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть : правила дифференцирования и производные некоторых элементарных функций, особенно:
производную константы:
, где – постоянное число;
производную степенной функции:
, в частности: , , .
Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.
В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.
В этой связи переходим к рассмотрению правил дифференцирования :
1) Постоянное число можно (и нужно) вынести за знак производной
Где – постоянное число (константа)
Пример 2
Найти производную функции
Смотрим в таблицу производных. Производная косинуса там есть, но у нас .
Самое время использовать правило, выносим постоянный множитель за знак производной:
А теперь превращаем наш косинус по таблице:
Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:
2) Производная суммы равна сумме производных
Пример 3
Найти производную функции
Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:
Применяем второе правило:
Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.
Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:
Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).
Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:
Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:
Все степени вида желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.
Пример 4
Найти производную функции
Попробуйте решить данный пример самостоятельно (ответ в конце урока). Желающие также могут воспользоваться интенсивным курсом в pdf-формате, который особенно актуален, если у вас в распоряжении совсем мало времени.
3) Производная произведения функций
Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:
Эта необычное правило (как, собственно, и другие) следует из определения производной . Но с теорией мы пока повременим – сейчас важнее научиться решать:
Пример 5
Найти производную функции
Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:
Сложно? Вовсе нет, вполне доступно даже для чайника.
Пример 6
Найти производную функции
В данной функции содержится сумма и произведение двух функций – квадратного трехчлена и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.
Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:
Теперь для скобки используем два первых правила:
В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:
Готово.
При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .
Пример 7
Найти производную функции
Это пример для самостоятельного решения (ответ в конце урока)
4) Производная частного функций
В потолке открылся люк, не пугайся, это глюк.
А вот это вот суровая действительность:
Пример 8
Найти производную функции
Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:
Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной.
Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.
Как найти?
Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования :
- Вынос константы за знак производной: $$ (Cu)" = C(u)" $$
- Производная суммы /разности функций: $$ (u \pm v)" = (u)" \pm (v)" $$
- Производная произведения двух функций: $$ (u \cdot v)" = u"v + uv" $$
- Производная дроби : $$ \bigg (\frac{u}{v} \bigg)" = \frac{u"v - uv"}{v^2} $$
- Производная сложной функции : $$ (f(g(x)))" = f"(g(x)) \cdot g"(x) $$
Примеры решения
Пример 1 |
Найти производную функции $ y = x^3 - 2x^2 + 7x - 1 $ |
Решение |
Производная суммы/разности функций равна сумме/разности производных: $$ y" = (x^3 - 2x^2 + 7x - 1)" = (x^3)" - (2x^2)" + (7x)" - (1)" = $$ Используя правило производной степенной функции $ (x^p)" = px^{p-1} $ имеем: $$ y" = 3x^{3-1} - 2 \cdot 2 x^{2-1} + 7 - 0 = 3x^2 - 4x + 7 $$ Так же было учтено, что производная от константы равна нулю. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y" = 3x^2 - 4x + 7 $$ |
С
правочные материалы по теме «производная». Базовый школьный уровень.
Теоретические сведения для учеников, преподавателей и репетиторов по математике. В помощь к проведению занятий.
Определение: производной функции в точке называется предел отношения приращения функции к приращению переменной, то есть
Таблица производных основных математических функций:
Правила вычисления производных
Производная суммы двух любых выражений равна сумме производных этих выражений (производная суммы равна сумме производных)
Производная разности двух любых выражений равна разности производных этих слагаемых (производная разности равна разности производных).
Производная от произведения
двух множителей равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго (сумма поочередно взятых производных от множителей).
Комментарий репетитора по математике:
когда я короткими фразами напоминаю ученику о правиле вычисления производной от произведения, я говорю так: производная первого множителя на второй плюс обмен штрихами!
Производная от частного
двух выражений равна частному разности поочередно взятых производных от множителей и квадрата знаменателя.
Производная от произведения числа на функцию . Чтобы найти производную от произведения числа на буквенное выражение (на функцию) нужно умножить это число на производную этого буквенного выражения.
Производная сложной функции:
Для вычисления производной сложной функции необходимо найти производную внешней функции и умножить ее на производную внутренней функции.
Ваши комментарии и отзывы к странице с производными:
Александр С.
Очень нужна была таблица. В интернете одна из самых. За пояснения и правила тоже огромное спасибо. Хотя бы по одному примеру ещё к ним и вообще было бы отлично было. Еще раз огромное спасибо.
Колпаков А.Н, репетитор по математике: хорошо, постараюсь в ближайшее время дополнить страницу примерами.
Виртуальный математический справочник.
Колпаков Александр Николаевич, репетитор по математике.
Доказательство и вывод формул производной натурального логарифма и логарифма по основанию a. Примеры вычисления производных от ln 2x, ln 3x и ln nx. Доказательство формулы производной логарифма n-го порядка методом математической индукции.
СодержаниеСм. также:
Логарифм - свойства, формулы, график
Натуральный логарифм - свойства, формулы, график
Вывод формул производных натурального логарифма и логарифма по основанию a
Производная натурального логарифма от x равна единице, деленной на x:
(1)
(ln
x)′ =
.
Производная логарифма по основанию a равна единице, деленной на переменную x, умноженную на натуральный логарифм от a
:
(2)
(log
a x)′ =
.
Доказательство
Пусть есть некоторое положительное число, не равное единице. Рассмотрим функцию, зависящую от переменной x
,
которая является логарифмом по основанию :
.
Эта функция определена при .
Найдем ее производную по переменной x
.
По определению, производная является следующим пределом:
(3)
.
Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам нужно знать следующие факты:
А)
Свойства логарифма . Нам понадобятся следующие формулы:
(4)
;
(5)
;
(6)
;
Б)
Непрерывность логарифма и свойство пределов для непрерывной функции:
(7)
.
Здесь - некоторая функция, у которой существует предел и этот предел положителен.
В)
Значение второго замечательного предела:
(8)
.
Применяем эти факты к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим свойства (4) и (5).
.
Воспользуемся свойством (7) и вторым замечательным пределом (8):
.
И, наконец, применим свойство (6):
.
Логарифм по основанию e
называется натуральным логарифмом
. Он обозначается так:
.
Тогда ;
.
Тем самым мы получили формулу (2) производной логарифма.
Производная натурального логарифма
Еще раз выпишем формулу производной логарифма по основанию a
:
.
Эта формула имеет наиболее простой вид для натурального логарифма, для которого ,
.
Тогда
(1)
.
Из-за такой простоты, натуральный логарифм очень широко используется в математическом анализе и в других разделах математики, связанных с дифференциальным исчислением. Логарифмические функции с другими основаниями можно выразить через натуральный логарифм, используя свойство (6):
.
Производную логарифма по основанию можно найти из формулы (1), если вынести постоянную за знак дифференцирования:
.
Другие способы доказательство производной логарифма
Здесь мы предполагаем, что нам известна формула производной экспоненты:
(9)
.
Тогда мы можем вывести формулу производной натурального логарифма, учитывая, что логарифм является обратной функцией к экспоненте.
Докажем формулу производной натурального логарифма, применив формулу производной обратной функции
:
.
В нашем случае .
Обратной функцией к натуральному логарифму является экспонента:
.
Ее производная определяется по формуле (9). Переменные можно обозначить любой буквой. В формуле (9), заменим переменную x на y:
.
Поскольку ,
то
.
Тогда
.
Формула доказана.
Теперь докажем формулу производной натурального логарифма с помощью правила дифференцирования сложной функции
. Поскольку функции и являются обратными друг к другу, то
.
Дифференцируем это уравнение по переменной x
:
(10)
.
Производная от икса равна единице:
.
Применяем правило дифференцирования сложной функции :
.
Здесь .
Подставим в (10):
.
Отсюда
.
Пример
Найти производные от ln 2x, ln 3x и ln nx .
Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = ln nx . Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от ln 2x и ln 3x .
Итак, ищем производную от функции
y = ln nx
.
Представим эту функцию как сложную функцию, состоящую из двух функций:
1)
Функции ,
зависящей от переменной :
;
2)
Функции ,
зависящей от переменной :
.
Тогда исходная функция составлена из функций и :
.
Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции .
.
Здесь мы подставили .
Итак, мы нашли:
(11)
.
Мы видим, что производная не зависит от n
.
Этот результат вполне естественен, если преобразовать исходную функцию, применяя формулу логарифма от произведения:
.
- это постоянная. Ее производная равна нулю. Тогда по правилу дифференцирования суммы имеем:
.
; ; .
Производная логарифма модуля x
Найдем производную от еще одной очень важной функции - натурального логарифма от модуля x
:
(12)
.
Рассмотрим случай .
Тогда и функция имеет вид:
.
Ее производная определяется по формуле (1):
.
Теперь рассмотрим случай .
Тогда и функция имеет вид:
,
где .
Но производную этой функции мы также нашли в приведенном выше примере. Она не зависит от n
и равна
.
Тогда
.
Объединяем эти два случая в одну формулу:
.
Соответственно, для логарифма по основанию a
,
имеем:
.
Производные высших порядков натурального логарифма
Рассмотрим функцию
.
Мы нашли ее производную первого порядка:
(13)
.
Найдем производную второго порядка:
.
Найдем производную третьего порядка:
.
Найдем производную четвертого порядка:
.
Можно заметить, что производная n-го порядка имеет вид:
(14)
.
Докажем это методом математической индукции.
Доказательство
Подставим в формулу (14) значение n = 1:
.
Поскольку ,
то при n = 1
,
формула (14) справедлива.
Предположим, что формула (14) выполняется при n = k . Докажем, что из этого следует, что формула справедлива при n = k + 1 .
Действительно, при n = k
имеем:
.
Дифференцируем по переменной x
:
.
Итак, мы получили:
.
Эта формула совпадает с формулой (14) при n = k + 1
.
Таким образом, из предположения, что формула (14) справедлива при n = k
следует, что формула (14) справедлива при n = k + 1
.
Поэтому формула (14), для производной n-го порядка, справедлива для любых n .
Производные высших порядков логарифма по основанию a
Чтобы найти производную n-го порядка от логарифма по основанию a
,
нужно выразить его через натуральный логарифм:
.
Применяя формулу (14), находим n-ю производную:
.